Análisis predictivo en marketing y ventas, basado en modelos de machine learning y en algoritmos, es de gran utilidad en diversos sectores, pero sobre todo en el marketing y las ventas. En este artículo, se detallan algunas de las aplicaciones del análisis predictivo más frecuentes en esas ramas.

SEGMENTACIÓN DE CLIENTES Y PERSONALIZACIÓN DE LA OFERTA

El Análisis predicitivo en marketing y ventas nos permite anticipar qué ofertas serán más efectivas en función del tipo de consumidor. Esto permite la máxima personalización, ya que no nos limitamos a datos cualitativos fáciles de obtener (ingresos, franja de edad, sexo...), sino que añadimos datos sobre sus intereses, gustos y comportamientos de compra previos.

Al realizar una segmentación tan profunda, podemos predecir comportamientos y actitudes futuros en función de los pasados y de los de otros clientes similares, lo que nos permitirá optimizar la oferta y anticiparnos a sus deseos.

OPTIMIZACIÓN DE RECURSOS EN EL FUNNEL DE VENTAS

Gracias al Análisis predicitivo en marketing y ventas podemos detectar el riesgo de que el cliente abandone su relación comercial con nosotros o el potencial que tiene de gastar más en nuestro negocio o de avanzar en el funnel de ventas. Y, lo que es más importante, cuántos recursos serían necesarios para evitar dicha “fuga” o conseguir que aumente sus gastos o convierta. 

Si el retorno de la inversión en dichos recursos no compensa, podemos ahorrarnos el esfuerzo y "atacar" a clientes menos propensos a marcharse… o más propensos a gastar más y convertir. O a los que cueste menos dinero/tiempo retener, convertir o fidelizar.

En definitiva, el análisis predictivo nos permite separar los clientes potencialmente rentables de los que no lo serán, dedicando los esfuerzos a los primeros y evitando malgastar recursos innecesariamente.

CROSS SELLING Y UP SELLING

En función de comportamientos de compra actuales, podemos predecir qué otros productos le interesarán al cliente o el potencial que tiene de comprar una categoría superior y más rentable para nosotros, añadir más productos al carro de la compra… Además, podremos hacerle la sugerencia en el momento justo para lograr más impacto.

MEJORA DEL MARKETING MIX PERSONALIZADO

La analítica predictiva es capaz de identificar, para cada tipo de cliente, las combinaciones más efectivas de productos, precios, material promocional, canales de comunicación, timing... De esta forma, nos ayuda a coordinar mejor todas las acciones de marketing a nivel global

PUBLICIDAD PREDICTIVA O NATIVE ADS

Gracias al análisis predictivo, podemos saber a qué clientes “atacar” y elegir el mejor anuncio basándonos en la probabilidad de que el cliente haga clic y en el ROI esperado por cada clic. 

CONOCER LOS CAMBIOS EN EL ESTILO DE VIDA DEL CLIENTE

A veces, los algoritmos saben que la vida del cliente va a cambiar… ¡incluso antes que el cliente! Me refiero a cambios tan cruciales como, por ejemplo, matrimonios, movilidad laboral, si van a tener un bebé…

ANTICIPAR TENDENCIAS

Con el análisis predictivo, podemos anticiparnos a las tendencias futuras y diseñar productos ad hoc para reaccionar a ellas antes que nadie, lo que nos colocará en una posición ventajosa frente a la competencia y nos pondrá en el top of mind de los consumidores.

CONCLUSIONES

El uso de algoritmos de análisis predictivo permite aprovechar más los recursos del departamento de marketing y tener un mejor conocimiento del cliente y del mercado. Por ello, es importante formarse con los mejores, para conocer todas las herramientas que podemos utilizar para realizar este tipo de análisis.

MÁSTER EXPERTO BIG DATA ANALYTICS

Gracias al Master en Big Data Analytics 100% Online tendrás amplios conocimientos sobre las herramientas y técnicas analíticas necesarias para la modelización de los principales retos de negocio, con el fin de mejorar la toma de decisiones a través de los datos y el conocimiento.

El análisis de grafos en redes sociales nos puede proporcionar mucha información sobre las comunidades, individuos influyentes y sinergias producidas en dichas redes. En este artículo veremos los conceptos más básicos necesarios para proceder a dicho análisis.

QUÉ ES UNA RED

Una red, básicamente, es un conjunto de nodos conectados por una serie de aristas. Estos nodos no tienen necesariamente que ser personas. También pueden ser países, webs, comunidades o incluso ingredientes en recetas de cocina.

Las aristas, por su parte, son relaciones entre esos nodos. Por lo tanto, pueden ser de diversos tipos: amistad, odio, parentesco, influencia, menciones, transferencias, interacciones, comunicaciones, migraciones… ¡Todo lo que se te pueda ocurrir para conectar un nodo con otro!

QUÉ ES UNA RED SOCIAL

No es más que una red en la que los nodos son individuos y las aristas son las relaciones entre dichos individuos. Estas relaciones pueden ser de amistad, pero también de influencia. Aquí debemos distinguir entre dos tipos de redes:

REDES SOCIALES NO DIRIGIDAS

Son aquellas redes en las que las aristas entre los nodos son todas bidireccionales, es decir, no van en ningún sentido concreto. Por ejemplo, los amigos de Facebook y los contactos de linkedin (si tú eres mi contacto, yo soy tu contacto y viceversa).

REDES SOCIALES DIRIGIDAS

Son aquellas redes en las que las aristas entre los nodos tienen una dirección, es decir, no son necesariamente bidireccionales. Por ejemplo, en twitter, un usuario puede seguir a otro pero ese otro usuario no tiene obligación de seguirle de vuelta. Son dirigidas todas aquellas redes que impliquen alguna mención o enlace a otro individuo que no necesariamente tenga que ser de vuelta (retweets y comentarios, menciones…).

EL PESO DE LAS ARISTAS

En el Análisis de grafos en redes sociales, el peso de las aristas también es una medida importante. Cuanto más peso tenga una arista, significa que la relación entre dos nodos es más fuerte. Por ejemplo, un usuario que retuitea todo lo que postea su ídolo tendrá una arista más gruesa y con más peso que otro que solo le menciona de vez en cuando. Igualmente, en la vida real se podría traducir en que dos amigas que se consideran “mejores amigas” tendrían una arista más gruesa que dos personas que solo se ven de vez en cuando para ir juntas a conciertos.

CONOCER LA ESTRUCTURA DE LA RED

La forma de la red y cómo se interrelacionan sus componentes es importante para conocer mejor fenómenos sociales subyacentes (cómo se transmitirá la información…). Iremos viendo cómo en próximos artículos.

IDENTIFICAR ACTORES CLAVE

Analizar gráfos en redes sociales nos indica el poder social de cada individuo, es decir, su influencia y cómo se concentran las aristas en ciertos individuos. Para hacer estos análisis, tenemos las medidas de centralidad, que es lo que tocaremos en el próximo artículo.

MÁSTER EXPERTO BIG DATA ANALYTICS

Gracias al Master en Big Data Analytics 100% Online tendrás amplios conocimientos sobre las herramientas y técnicas analíticas necesarias para la modelización de los principales retos de negocio, con el fin de mejorar la toma de decisiones a través de los datos y el conocimiento.

FASES DE LA ANALÍTICA BIG DATA. Queremos implementar la analítica Big Data en nuestra empresa pero ¿cómo hacerlo? En principio, sistematizar la analítica de datos puede parecer una tarea ingente, pero por suerte cualquier método analítico sigue una serie de pasos que detallamos a continuación:

OBTENCIÓN DE DATOS

FASES DE LA ANALÍTICA BIG DATA. Lo primero es asegurarnos de que obtenemos datos de calidad de los que pueda salir un análisis veraz, útil y fiable. Es importante, en esta fase, que la empresa identifique sus objetivos para que sepa qué datos necesita y cómo conseguirlos.

LIMPIEZA Y FILTRADO DE DATOS

FASES DE LA ANALÍTICA BIG DATA. Una vez tenemos los datos “en bruto”, hacemos una primera manipulación para hacerlos manejables. En esta fase eliminamos duplicados o errores y los trasladamos al formato más adecuado para su procesamiento.

PROCESAMIENTO DE DATOS

FASES DE LA ANALÍTICA BIG DATA. Aquí lo que hacemos es integrar los datos, manipulándolos masivamente para estructurarlos y diferenciarlos (a veces, en función de lo que necesitemos, extraeremos subconjuntos relevantes para manipularlos y analizarlos sin afectar al resto), de forma que podamos extraer información valiosa de ellos en fases posteriores.

MODELADO Y ALGORITMOS

FASES DE LA ANALÍTICA BIG DATA. En este paso construiremos un modelo analítico y elegiremos las metodologías a utilizar según el resultado que busquemos (datos estadísticos, regresiones, predicciones…). Una vez decidido esto, procederemos a crear los algoritmos necesarios para poner en marcha el modelo de machine learning.

TESTEO Y ENTRENAMIENTO DEL MODELO

FASES DE LA ANALÍTICA BIG DATA. Creados los algoritmos, ejecutamos el modelo contra un conjunto de datos parciales para probar su precisión. Entrenaremos el modelo hasta llegar al nivel de precisión deseado, momento en el cual finalizamos esta fase.

EJECUCIÓN DEL MODELO

Es el momento de ejecutar el conjunto de datos completo, bien sea una vez, si se trata de una necesidad de información puntual y específica, o de forma continua, mediante una automatización a medida que se actualizan los datos, si es una necesidad recurrente.

VISUALIZACIÓN DE LOS RESULTADOS

Los resultados y, en general, toda la información útil extraída, ha de llegar al usuario final de forma que pueda comprenderla: mediante informes, gráficos u otro tipo de soporte de visualización. Para ello, usaremos software de análisis y visualización de datos Big Data como Power BI.

CONCLUSIÓN

Seguir los pasos para conseguir implementar una analítica Big Data es relativamente sencillo. Lo que no es tan sencillo es tener los conocimientos necesarios para llevar a cabo la realización de los algoritmos necesarios para los modelos, o para mostrar los resultados en potentes visualizaciones.

MÁSTER EXPERTO BIG DATA ANALYTICS

Gracias al Master en Big Data Analytics 100% Online tendrás amplios conocimientos sobre las herramientas y técnicas analíticas necesarias para la modelización de los principales retos de negocio, con el fin de mejorar la toma de decisiones a través de los datos y el conocimiento.

El análisis de datos nos proporciona grandes ventajas competitivas, desde el apoyo en la toma de decisiones o la segmentación de partners y clientes hasta mejoras en la gestión interna. Pero, ¿cómo extraer todos estos beneficios de los datos?

No basta con recopilar y almacenar de forma masiva tantos datos como sea posible y enriquecer tu base de datos sin ton ni son. Para sacar valor de dichos datos, tenemos que analizarlos y, para ello, debemos tener claros los objetivos de dicho análisis y qué tipo de información es valiosa para nosotros.

EL BIG DATA EN LA ANALÍTICA DE DATOS

TIPOS DE ANALÍTICA BIG DATA. La analítica tradicional está limitada a un pequeño número de datos estructurados, por lo que los resultados de los análisis pueden resultar un poco pobres. Con Big Data, podemos analizar grandes cantidades de datos, aunque no estén estructurados, y construir modelos a partir de patrones que no siempre se aprecian a simple vista.

ANALÍTICA DESCRIPTIVA

TIPOS DE ANALÍTICA BIG DATA. Responde a la pregunta “¿qué sucedió?” analizando el pasado y el desempeño de las actividades de nuestra empresa, para lo que utiliza datos históricos.

Básicamente, simplifica y resume los datos para darnos una visión y contexto con los que entenderlos. Para ello, usa herramientas como inteligencia de negocio, análisis estadísticominería de datos, aunque es relativamente sencilla de hacer, por lo que es el tipo de analítica más extendido.

ANALÍTICA DIAGNÓSTICA

TIPOS DE ANALÍTICA BIG DATA. Responde a la pregunta “¿por qué sucedió?”. Al igual que la descriptiva, tiene en cuenta el desempeño pasado del comercio pero suma al análisis datos del contexto. Gracias a eso, da un paso más allá de la anterior y permite descubrir tendencias o relaciones causales.

ANALÍTICA PREDICTIVA

TIPOS DE ANALÍTICA BIG DATA. Responde a la pregunta “¿qué podría pasar?” contrastando datos recientes e históricos con técnicas como la minería de datos, modelos de machine learning y estadísticas, para ofrecer escenarios y comportamientos de clientes futuros posibles basados en probabilidades.

ANALÍTICA PRESCRIPTIVA

Esta va mucho más allá y nos responde a la pregunta “¿qué deberíamos hacer?”. No sólo permite vislumbrar escenarios futuros probables, también sugiere decisiones a tomar frente a estos escenarios y el impacto de cada posible curso de acción que se tome.

Para llevarla a cabo se utilizan herramientas de machine learning como la optimización, Análisis de Decisión Multicriterio o la simulación.

CONCLUSIÓN

Por supuesto, los cuatro tipos de analítica Big Data son fácilmente combinables entre sí, no son excluyentes. No obstante, el uso de unas u otras depende de la cantidad de datos disponible y de nuestras capacidades técnicas. Para conseguir dichas capacidades técnicas necesitamos un conocimiento avanzado de herramientas de Big Data que nos permitan elaborar modelos de machine learning capaces de llevar el análisis de nuestros datos al máximo nivel.

MÁSTER EXPERTO BIG DATA ANALYTICS

Gracias al Master en Big Data Analytics 100% Online tendrás amplios conocimientos sobre las herramientas y técnicas analíticas necesarias para la modelización de los principales retos de negocio, con el fin de mejorar la toma de decisiones a través de los datos y el conocimiento.

Tras ver qué podemos hacer conectando twitter y R y cómo hacerlo, además de algunas de las funciones más importantes, y cómo segmentamos seguidores, toca mostrar algunas de las funciones que nos permiten analizar publicaciones y hashtags.

ANÁLISIS DE PALABRAS MÁS REPETIDAS JUNTO A UN HASHTAG

Ver qué palabras tienen asociadas ciertos hashtags relevantes nos permiten no solo encontrar más hashtags para añadir a nuestra publicación, sino a detectar nuevas temáticas relacionadas y afinar las palabras que usamos en nuestras publicaciones. Lo primero que debemos hacer es instalar y llamar todas las librerías que vimos anteriormente, conectar con la API de twitter, usar la función para sacar la información del hashtag que nos interesa y convertirlo en un dataframe. Luego, lo convertimos en un string y hacemos todas las operaciones que mencioné en el artículo anterior para limpiar el texto al máximo y sacar una tabla de frecuencias con las palabras más repetidas ordenadas. Todas las instrucciones para hacer esto están en los artículos anteriores, por eso pasamos rápido por este punto.

QUÉ USUARIOS SON LOS QUE MÁS USAN ESE HASHTAG

Detectar los usuarios más activos en un tema nos ayuda no solo a detectar seguidores potenciales, sino también a influencers en el tema y a personas que pueden generar contenidos que nos interesa compartir con nuestra audiencia. Hacerlo es muy sencillo: sobre el dataframe que creamos inicialmente para sacar las publicaciones de un determinado hashtag, hacemos lo siguiente:

#qué usuarios son los que más han empleado el hashtag:
#eliminamos los retweet y nos quedamos sólo con los nombres de los usuarios que han escrito el tweet
usuarios <-subset(dataframehashtag,isRetweet==FALSE)$screenName
#Opción 1: los tabulamos y ordenamos.
usuarios<-sort(table(usuarios),decreasing=T)
#Opción 2: ver directamente los x iniciales
usuarios[1:x]

QUÉ CONTENIDOS DE UN HASHTAG SON MÁS POPULARES

En twitter, la medida de popularidad de una publicación está en la interacción que tiene (respuestas, favoritos y retweets, en especial estos dos últimos) así que sacar las publicaciones más populares de un hashtag es tan sencillo como crear un filtro en el dataframe para sacar las publicaciones en las que haya al menos x interacciones

#contenido más retuiteado
#retuiteado + fav
contenido_popular<-filter(dataframehashtag, dataframehashtag[["favoriteCount"]]>x, dataframehashtag[["retweetCount"]]>x)
#solo retuiteado
contenido_popular2<-filter(dataframehashtag, dataframehashtag[["retweetCount"]]>x)

Hay que tener presente que, según el sector, a veces la gente no hace retweet pero sí fav, o al revés, o no hace ninguna de las dos pero sí responde a las publicaciones. También, según el tipo de hashtag, x deberá ser mayor o menor. Así pues, es tan fácil como ajustar el código a las circunstancias. Luego, sobre eso, podemos hacer un nuevo filtro para sacar las palabras más populares del contenido más popular, lo que nos indicará qué no debe faltar en nuestras publicaciones para tener potencial de éxito.

ANÁLISIS DE SENTIMIENTOS DE UN HASHTAG

El análisis de sentimientos nos permite monitorizar opiniones sobre determinados temas, saber hasta qué punto en un sector se utilizan un tipo de mensajes u otros (aprovechando miedos de los consumidores para vender determinados productos frente a ventas atrayendo a los seguidores con los beneficios, por ejemplo)... Para hacerlo, además de las anteriores, necesitamos instalar y ejecutar las librerías SnowballC, tm y syuzhet. Con ellas hay que tener un poco de paciencia, a veces fallan y hay que ejecutarlas varias veces, aunque suelen funcionar de forma correcta. Hecho esto, creamos un dataframe con los datos del hashtag que nos interesa y, quedándonos solo con la columna text, eliminamos hashtags, @, url y toda la información que no es relevante para el análisis mediante la función gsub, que mostré en el artículo anterior. Luego comenzamos a trabajar con definiciones de sentimientos. Por ejemplo, podemos crear una tabla en la que nos muestre si las publicaciones contienen palabras asociadas a los sentimientos principales y cuántas hay.

#Insertando palabras de definición de sentimientos
word.df <- as.vector(dataframehashtag)
emotion.df <- get_nrc_sentiment(word.df)
emotion.df2 <- cbind(bigdata.df2, emotion.df)

Saldrá algo parecido a esto:

análisis datos twitter

También podemos sacar publicaciones donde predomine un sentimiento mediante este código:

#extrayendo puntuación de sentimientos
sent.value <- get_sentiment(word.df)
#más positivos (si queremos los más negativos, cambiamos max por min
most.positive <- word.df[sent.value == max(sent.value)]
#simplemente positivos (si queremos negativos o neutros, poner < o == respectivamente)
positive.tweets <- word.df[sent.value > 0]
#tabla resumen
category_senti <- ifelse(sent.value < 0, "Negative", ifelse(sent.value > 0, "Positive", "Neutral"))
table(category_senti)

Y este es el resumen del código utilizado en la charla de Analizando datos de twitter con R, impartida por Déborah Fernández el pasado día 27. Si queréis ver la charla completa con explicaciones más detalladas y ejecución de parte del código en directo, podéis visitar nuestro canal de youtube.

¿QUIERES APLICAR TODO ESTE CONOCIMIENTO? COMIENZA A A PROGRAMAR EN R

En nuestro curso de Análisis de datos con R aprenderás de forma rápida a utilizar este lenguaje.

Ya hemos hablado en otra entrada de qué es R y de su potencial. Hoy, nos centraremos en cómo puede esta herramienta ayudarnos a sacar el máximo partido de nuestros datos de twitter. Cada vez hay más librerías relacionadas con twitter que podemos utilizar para extraer y analizar estos datos, pero para este caso utilizaremos Twitter. ANÁLISIS DE DATOS DE TWITTER CON R

DATOS DE LOS TEXTOS GENERADOS

Cada tweet creado nos da mucha información relevante: desde su origen en según qué plataformas hasta cuántas interacciones posee, aparte del propio texto. En esta imagen, podemos ver qué información nos dan algunos de los tweets de datahack. ANÁLISIS DE DATOS DE TWITTER CON R

datos que podemos sacar de un tweet para análisis

DATOS DE LOS USUARIOS

Entre los datos más relevantes de cada usuario, podemos sacar desde su propia autodescripción, su nivel de influencia (seguidores-seguidos), cómo de activo es, procedencia… En esta imagen podemos ver la información de nuestro usuario @datahack_

datos que podemos sacar de un usuario para análisis

ANÁLISIS RELEVANTES

Con todo lo recogido, podemos sacar información bastante útil para optimizar nuestro posicionamiento y el tipo de mensajes que mandamos en las redes sociales y podemos realizar:

CÓMO EMPEZAR EL ANÁLISIS DE DATOS DE TWITTER CON R

Para conectar twitter con el programa en el que estemos ejecutando el lenguaje R, lo primero que necesitamos es una cuenta en la API de twitter. Una vez que la tengamos, podremos conectarnos gracias a las claves que nos proporcione.

La API de twitter tiene algunas limitaciones, como un número máximo de tweets recuperados por consulta y una limitación de tiempo mínimo entre consulta y consulta. Si nos pasamos podemos ser bloqueados, así que tenemos que tener cuidado y poner siempre un tamaño de muestra inferior a 200, sin hacer varias consultas en la misma ejecución. Si necesitamos muestras más grandes, podemos hacer varias consultas periódicamente en las que vayamos descargando datos (son en orden cronológico) y uniéndolos, por ejemplo. ANÁLISIS DE DATOS DE TWITTER CON R

En cualquier caso, lo más interesante del análisis de datos en twitter es la inmediatez, para ver las tendencias de cada momento, ya que los hashtags populares y las palabras asociadas a los mismos, por ejemplo, pueden cambiar de un día para otro, por lo que con una muestra de 100 es más que suficiente.

Conectaremos la API de twitter con R mediante el siguiente código:

# Cargar las credenciales
consumer_key <- "xxx"
consumer_secret <-"xxx"
access_token <-"xxx"
access_secret <-"xxx"
setup_twitter_oauth(consumer_key, consumer_secret, access_token=access_token, access_secret=access_secret)

FUNCIONES BÁSICAS

Una vez hecho esto, podemos ponernos a trabajar. Algunas de las funciones más básicas que debemos aprender son las llamadas para recuperar información y cómo convertirlas en dataframes   con los que trabajar. No olvidemos que, para trabajar con los datos de twitter, tendremos que instalar y llamar las librerías twitteR, base64enc y tidyverse

Si quieres profundizar en la herramienta R, ¡en datahack te ayudamos! Con nuestro Master en Data Science y Big Data aprenderás todo lo que necesitas para dar un paso al mundo de los datos.

SACAR TODA LA INFORMACIÓN DEL TIMELINE Y CARACTERÍSTICAS DE UN USUARIO

#sacar tweets de un usuario:
usuario<- userTimeline('usuario',n=100)

Para conseguir solo algunos de los datos más importantes, como seguidores y seguidos, podemos usar este código (sin olvidar convertirlo después en un dataframe):

#Sacar información de un usuario:
usuario<- getUser('usuario')
#conseguir sus seguidores
usuario_seguidores <- usuario$getFollowers(retryOnRateLimit=120)
#conseguir sus seguidos
usuario_seguidores <- usuario$getFriends(retryOnRateLimit=120)

SACAR TODA LA INFORMACIÓN DE UN HASHTAG

#buscamos el hashtag, limitamos la búsqueda a 100 tweets desde el 01 de junio de 2018.
hashtag<-searchTwitter("#hashtag", n=100, since='2018-06-01')

HACER LOS DATAFRAMES

No hay que olvidar que toda esta información que saquemos, para trabajar con ella, hay que convertirla en un dataframe con la función do.call o twListToDF. Esta es la estructura de ambas:

do.call("rbind", lapply(xxx, as.data.frame))
twListToDF(xxx)

ANÁLISIS DE DATOS DE TWITTER CON R. Una vez que tenemos todo esto, podemos comenzar a trabajar en el análisis de toda esa información, que es lo que mostraremos en los próximos artículos:

 

MÁSTER EN DATA SCIENCE Y BIG DATA

¿Quieres convertirte en un profesional de la herramienta R? En datahack encontrarás a tu mejor aliado. Consulta nuestra oferta de Máster en Data Science y Big Data , práctica y adaptada a las necesidades del mercado. ¿Tienes dudas? Pregúntanos directamente todo lo que se te ocurra. ¡Empieza ya a abrirte camino como especialista en Inteligencia de Negocio!

chevron-down