Temática

Empleabilidad

Tiempo de lectura

5 minutos

Clave de contenido del artículo

Todos sabemos que las principales competencias técnicas demandadas en las vacantes del sector de Big Data son:

  • Lenguajes de Programación
  • Aprendizaje Automático, IA y Procesamiento del Lenguaje Natural (NPL)
  • Análisis cuantitativo
  • Minería de Datos
  • Resolución de problemas
  • Bases de Datos SQL y NoSQL
  • Estructura de Datos y Algoritmos
  • Interpretación y Visualización de Datos

Paloma Romero

EMEA Talent and Culture Lead

Autora del artículo

En un mercado laboral tan competitivo como el actual, es importante que los que buscan empleo en Big Data tengan una idea clara de lo que las empresas buscan.

Un informe del Boston Consulting Group sitúa a España como el octavo país "más atractivo" del mundo para el traslado de trabajadores tecnológicos, por detrás de Francia y Suiza. Esto lo facilita la alta calidad de vida en España y nuestra cultura.

Asimismo, en España, el 70% de los trabajadores tecnológicos son hombres, y sólo el 30% mujeres. Algunas instituciones, como la Universidad de Granada, están desarrollando iniciativas para eliminar esta brecha, pero todavía hay que trabajar mucho para lograr un equilibrio.

Prioridades en la demanda del sector Big Data según publica en varias entrevistas el MIT

Jonathan Lowe, Jefe de Ciencia de Datos en Pfizer

Jonathan Lowe aclara que a veces hacemos excepciones y contratamos sin tener todas las habilidades, y nos fijamos en la experiencia en el negocio, "Si alguien dice: 'He trabajado en un laboratorio de calidad durante la mitad de mi carrera y ahora, durante los últimos años, he estado aprendiendo más ciencia de datos', nosotros engulliremos a esas personas".

Yichen Sun, Directora de Ciencia de Datos en Netflix

Por otro lado, según Yichen Sun, "necesitamos a alguien que tenga principios y sea práctico a la vez, que haga las concesiones adecuadas y que sea capaz de articular el 'por qué' de esas decisiones técnicas".

Cerrar la brecha entre el negocio y los datos de una empresa son las principales prioridades, haciendo hincapié en la importancia de traducir con precisión la información obtenida de los datos en estrategias empresariales viables.

Por ello, las funciones actuales centradas en los datos también requieren curiosidad, lo que contribuye a una mentalidad innovadora y orientada a la resolución de problemas. Aunque un experto en datos con una solución en busca de un problema no es algo que rompa el trato, Sun dijo que intentará entrenar a la persona para que entienda que su solución puede ser la aplicación correcta para un problema, pero que puede haber una forma "aún más elegante o incluso más simple de hacerlo".

En relación con esto, Sun también busca a "alguien que sea más reflexivo, que sea capaz de recibir esta retroalimentación de una manera muy productiva y ser adaptable en términos de qué enfoque utiliza."

Nadine Kawkabani, Global Business Strategy Director en  MFS Investment Management

Por último, Nadine Kawkabani declara que la necesidad de competencias interpersonales son ejemplos de cómo han cambiado los puestos de trabajo relacionados con los datos y el análisis, y la cultura asociada. Ya no se trata de trabajar con datos; se trata de garantizar que los datos tengan sentido y que las personas que los manejan entiendan también cómo influyen en la estrategia de la empresa.

"Todos dependemos de todos", afirma Kawkabani. "Puedo plantear la mejor estrategia, pero si no tengo buenos datos, buenos gráficos, datos precisos y datos oportunos e interpretables, no significan nada".

Conclusiones

Tras estas opiniones podemos entonces concluir que en un mercado laboral tan competitivo como el actual, las empresas buscan a los mejores y para ello no solo hay que ser “excelente” en datos, hay que ser también excelente en:

Cualquier empresario buscará a la persona que genere mayor valor añadido a su negocio, que aumente la calidad de lo que hace o que sea capaz de ir más allá de lo esperado… esto es escalable a cualquier sector y a cualquier área, no solo a las relacionadas con los datos. Esto nos lleva a que debemos ser los mejores a nivel técnico y a nivel competencial

Por otro lado, un informe del Boston Consulting Group sitúa a España como el octavo país "más atractivo" del mundo para el traslado de trabajadores tecnológicos, por detrás de Francia y Suiza. Claramente, la alta calidad de vida en España y nuestra cultura facilitan esta posición.

Desafortunadamente sigue existiendo diferencia de género en España, ya que como se ha explicado anteriormente, el 70% de los trabajadores tecnológicos son hombres. Sólo el 30% son mujeres.

Según IESE, a pesar de las elevadas tasas de desempleo juvenil en España, el 75% de las empresas encuestadas afirma estar encontrando importantes dificultades para contratar talento con las competencias adecuadas para cubrir sus necesidades.

Además, el 76% de las empresas señalan una brecha de competencias entre lo que necesitan sus organizaciones y la formación ofrecida por el sistema universitario. Al mismo tiempo, el 79% de las empresas señalan una brecha de competencias en los candidatos con formación profesional.

En las grandes empresas encuestadas se espera que el teletrabajo represente casi el 40% de las horas de trabajo en 2025. Frente a esto, las habilidades de liderazgo de los directivos cobrarán mayor relevancia (según el 88% de las empresas). El resto de la plantilla deberá mostrar más capacidad de aprendizaje y de trabajo en equipo (según el 60% y el 59% de las empresas, respectivamente), entre otras habilidades.

Finalmente, ya que hablamos de la empleabilidad hablemos también de los salarios tomando varias fuentes:

La Inteligencia artificial y chat GPT han dado de que hablar en los últimos meses, tanto en el ámbito privado como el profesional.

Pablo Montoliu, Chief Information & Innovation Officer en Aon; Ángel Niño, Concejal en Madrid delegado de Área de Innovación y Emprendimiento, además de Presidente de MercaMadrid; y Lourdes Hernández, CEO de datahack, presentarán y explicarán en detalle lo que esta moda o revolución trae consigo y si afectará de manera positiva o negativa a nuestra vida cotidiana.

¿Es la IA y chat GPT una moda pasajera o han llegado para quedarse?

El evento constará de la siguiente estructura:

  1. ¿Qué es la inteligencia artificial generativa?
  2. Aplicaciones y beneficios de la inteligencia artificial generativa
  3. Impacto social de la IA: ¿Nos va a quitar el trabajo?
  4. Chat GPT: El inicio del Boom
  5. La IA en el futuro
  6. Conclusiones y ronda de preguntas

Nuestros ponentes

Pablo Montoliu

Chief Information & Innovation Officer en Aon

Ángel Niño

Concejal en Madrid delegado de Área de Innovación y Emprendimiento, y Presidente de MercaMadrid

Lourdes Hernández

CEO de datahack

¡Inscríbete al evento y no te pierdas nada!

¿Qué tienes que hacer para asistir a este #evento? Muy sencillo. Únicamente tendrás que registrarte desde este evento y esperar al día 24 de mayo (se realizará desde LinkedIn Live por lo que se deberá acceder a la plataforma de LinkedIn a la hora del evento).

Regístrate aquí gratis para asistir online:

🔵 Esta sesión será online en directo y desde la plataforma de LinkedIn Live.

🔵 Este formulario es para apuntarte a la sesión online.

🔵 Durante la sesión podrás preguntar todas las dudas que tengas al ponente y las irá respondiendo. No te quedes con ninguna duda.

🔵 Al registrarte recibirás un enlace en tu email con el que podrás conectarte a la sesión online.

Adelántate al futuro con este evento y amplia tus conocimientos de la mano de profesionales.

Inscríbete

Tématica

Inteligencia Artificial

Tiempo de lectura

7 minutos

Claves de contenido del artículo

Machine Learning

Deep Learning

Foundation Models


Estamos ya en el año 2023, y como podemos constatar en cualquier medio de comunicación, la inteligencia artificial vuelve a estar de moda. ¿Vuelve? Sí, porque en realidad este término se acuñó en el año 1956, y en los casi 70 años de historia que tiene ya esta rama de la tecnología, la misma ha evolucionado a una escala que difícilmente podría haberse pronosticado.

Desde sus inicios, la inteligencia artificial ha perseguido el objetivo de crear máquinas con una inteligencia similar o superior a la nuestra, con el fin de poder delegar trabajo cognitivo en ellas, o como apoyo para poder aumentar nuestra propia capacidad de pensamiento. Pero este objetivo es más un sueño que una meta bien definida porque, ¿qué es en realidad la inteligencia? ¿Cómo la definimos? Y, sobre todo, ¿cómo funcionan nuestros propios cerebros, esos que queremos imitar mediante tecnología? No lo sabemos con precisión.

Álvaro Barbero Jiménez

Chief Data Scientist del Instituto de Ingeniería del Conocimiento (IIC)

Autor del artículo

Es por esta indefinición que el foco de la IA y los métodos para abordarla han ido cambiando a lo largo de estas 7 décadas. En sus inicios, muchos investigadores en IA centraban sus esfuerzos en crear sistemas que pudieran replicar la capacidad de los humanos en tareas intelectualmente complejas: jugar al ajedrez, demostrar teoremas, realizar un diagnóstico médico en base las evidencias… se trataba de una forma concreta de implementar la IA, que hoy conocemos como sistemas expertos, y que tratan de realizar razonamientos empleando una base de datos de conocimientos y reglas, así como un sistema de inferencia basado en la lógica formal. Un ejemplo habitual de este tipo de sistemas sería el que dispone de la siguiente información:

hombre(x) ->mortal(x) (si es un hombre, entonces también es mortal)

hombre(Sócrates)= True (Sócrates es un hombre)

De lo que el sistema puede deducir mediante implicación lógica que mortal(Sócrates)=True (Sócrates es mortal). Esta clase de sistemas llegaron a utilizarse con éxito en campos como el diagnóstico de enfermedades infecciosas en la sangre. No obstante, en general este tipo de sistemas de IA resultaban ser difíciles de construir, dado que es necesario contar con expertos en la materia con los que colaborar para formalizar su conocimiento y métodos de trabajo en reglas formales. Así mismo, su mantenimiento y actualización a nuevas situaciones implicaba revisar su juego de reglas, una tarea que podía llegar a ser muy costosa en sistemas de gran tamaño.

Por otra parte, en torno a la misma época en la que se descubrían las limitaciones de los sistemas expertos, se llegó a una conclusión inesperada en cuanto al funcionamiento de la inteligencia: que las tareas que a los humanos nos resultan cognitivamente complejas, como los razonamientos matemáticos o la lógica formal, ¡son en realidad muy sencillas de implementar en un computador! Especialmente cuando se comparan contra el desafío de desarrollar una máquina con las capacidades sensoriales y motoras que puede tener cualquier niño con un desarrollo normal. Este hecho se recoge en la famosa paradoja de Moravec, y ha demostrado ser uno de los mayores obstáculos en del desarrollo de la IA: que las habilidades que a nosotros nos resultan intuitivas y naturales son las más difíciles de replicar de manera artificial.

Machine Learning

Una alternativa a los sistemas expertos de mayor aplicabilidad práctica y que se ha desarrollado con mucha solidez desde la década de los 80 es el aprendizaje automático o machine learning. En este tipo de IAs la clave radica en recopilar el conocimiento del experto no como una serie de reglas formales, sino como ejemplos que demuestren su forma de actuar. De este modo, podemos compilar una base de datos formada por casos médicos, en la que para cada caso recogemos la información utilizada el experto médico para su examen (constantes, analíticas, etc…), así como su diagnóstico, y el sistema de IA podrá aprender a imitar su forma de proceder. Dentro de este tipo de IA caben toda una variedad de algoritmos que afrontan este problema de aprendizaje empleando diferentes aproximaciones estadísticas: vecinos próximos, árboles de decisión, métodos de ensemble, máquinas de vectores de soporte, y muchos otros más.

Deep Learning

Uno de los métodos que ha destacado especialmente durante la última década han sido los basados en redes neuronales artificiales, hoy día también conocidos como Deep Learning. Aunque en realidad este tipo de IAs llevan en desarrollo desde incluso antes de que se acuñara el término “inteligencia artificial”, no fue hasta 2010 y años posteriores cuando se descubrieron las estrategias clave para poder construir sistemas de esta clase a gran escala: de ahí el calificativo “Deep”.

En esencia, las redes neuronales son un subtipo del aprendizaje automático, en el que una serie de neuronas artificiales imitan superficialmente el comportamiento de una neurona real, y se encargan de realizar la tarea del aprendizaje en base a los datos. Su principal ventaja frente a otros modelos de aprendizaje automático es su flexibilidad, ya que pueden construirse redes desde unas decenas de neuronas hasta miles de millones, escalando así su capacidad para aprender de bases de datos de tamaño masivo.

Además, esta flexibilidad del Deep Learning ha permitido a los investigadores en IA desarrollar “neuronas” especializadas en el tratamiento de datos no estructurados: imágenes, vídeos, textos, audio, etc… si bien esta clase de redes neuronales artificiales cada vez están más alejadas de la biología real, han demostrado ser tremendamente prácticas para abordar problemas muy complejos como son la detección de objetos de interés en imágenes (ej: personas, coches, …), la traducción automática entre idiomas, o la síntesis de voz. Con este hito se ha logrado abordar de manera muy efectiva la clase de desafíos sobre los que la paradoja de Moravec nos alertaba: aquellos que nos resultan intuitivos a nosotros, pero de difícil implementación en una máquina.

Foundation Models

¿Y qué podemos decir de estos últimos años? Sin duda, el avance más significativo en IA ha venido de la mano de los modelos base o foundation models. Se trata de un paso más en las redes neuronales artificiales, en el que redes de inmenso tamaño aprenden a modelar la dinámica de un proceso complejo mediante el análisis de bases de datos masivas.

Por ejemplo, un modelo base del lenguaje español es aquel que aprende cómo se estructura el idioma español y cómo suele usarse, mediante el procesado de gigabytes de textos escritos en este idioma. Este modelo no persigue un objetivo concreto, más allá de asimilar la estructura del lenguaje. Pero precisamente por eso puede alimentarse de cualquier texto escrito en el idioma, sin necesidad de que este haya sido preparado y validado por un experto, abriendo así la puerta a que la red neuronal pueda aprender de… básicamente todo el material que podamos suministrarle de Internet.

La pregunta que surge entonces es, ¿y para qué sirve un modelo así, si no tiene un objetivo práctico concreto? Pues porque como indica su nombre, sirven como base para crear modelos que apliquen a tareas concretas.

Por ejemplo, un modelo base del lenguaje español puede reajustarse a la tarea de analizar las emociones expresadas en un tweet, usando un conjunto de datos de tamaño medio con ejemplos de cómo hacer esta tarea. La ventaja de esta aproximación respecto de crear una red neuronal nueva que aprenda directamente de los datos es que el modelo base adaptado tendrá una efectividad mucho mayor, y requerirá de un juego de datos más pequeño para aprender a realizar su tarea. El motivo es que el modelo base ya conoce cómo se estructura el lenguaje español, y ahora solo le queda aprender cómo extraer la emoción de un texto en español.

Puede que los modelos base nos suenen a algo extraño, pero lo cierto es que están detrás de las IAs más famosas en la actualidad: GPT-3, ChatGPT, GPT-4, DALL-E 2, Stable Diffusion, … todas ellas utilizan de alguna manera u otra este concepto, y nos demuestran cómo aprender de fuentes de datos a tamaño Internet nos lleva a un tipo de Inteligencia Artificial muy superior a los vistos hasta ahora.

Deep Reinforcement Learning

Con todas estas IAs a la carrera, demostrando resultados cada vez más impresionantes, la pregunta que cabe hacerse es: ¿qué podemos esperar a partir de ahora? Internet es una fuente masiva de información, pero al mismo tiempo es limitada cuando se compara con la percepción que los humanos tenemos del mundo. Los estudios sobre modelos base han demostrado que a mayor número de datos podemos observar, mayor es la capacidad del sistema de IA resultante. Por tanto, el siguiente paso natural sería permitir que estos sistemas puedan aprender también de observaciones que hagan del mundo real, y más aún, que consigan a través de su propia experiencia. Este es el objetivo del aprendizaje por refuerzo profundo o deep reinforcement learning, el cual persigue que una red neuronal artificial pueda experimentar con su entorno y mejorar en una tarea a base de observar los resultados de sus experimentos.

Un ejemplo de este tipo de Inteligencia Artificial es AlphaZero, la cual consiguió alcanzar un rendimiento sobrehumano en el juego de tablero Go en tan solo 24 horas de aprendizaje, u OpenAI Five, que logró derrotar al equipo campeón del mundo en el e-sport DOTA2. Y fuera del mundo de los juegos, se han aplicado incluso para mejorar el control de un reactor experimental de fusión nuclear. ¿Será este el siguiente paso en la evolución de la IA? Aunque hoy día son sistemas muy costosos y complejos de aplicar en proyectos prácticos, alguna de las ideas que subyacen a su funcionamiento ya han sido incorporadas en ChatGPT y GPT-4, por lo que la tendencia parece clara.

Conoce más sobre IA en nuestro Máster Executive Inteligencia Artificial y Big Data

100% online

Más información

Según un informe de McKinsey, la inteligencia artificial (IA) generará un crecimiento de 13 billones de $ en el PIB global para 2030, que se producirá en sectores como la manufactura, agricultura, energía, logística y educación, entre otros. Así, el actual auge de la IA presenta una oportunidad para que los ejecutivos de todas las industrias puedan diferenciar y defender sus negocios. Sin embargo, antes de lanzarse al mundo de la Inteligencia Artificial, hay que entender qué es realmente la IA (se explicó en un artículo anterior de este blog) y qué aspectos hay que tener en cuenta, a la hora de planificar e implementar la IA, de forma exitosa.

Todo esto lo comentaremos en una serie de dos artículos. En este primero, se hablará de cómo planificar la integración de la Inteligencia Artificial en la empresa. En el segundo, la forma de llevarla a cabo.

INTEGRACIÓN DE LA INTELIGENCIA ARTIFICIAL EN LA EMPRESA

Lo primero, antes de todo, es pensar en el negocio, es decir, planificar la integración de Inteligencia Artificial pensando primero en los objetivos de negocio. Así, siempre será mejor incorporar la IA en el plan estratégico de la empresa que construir una estrategia de Inteligencia Artificial en sí misma. Para esto, hay que ver como la IA puede ayudar a conseguir los objetivos de negocio, no convertirla en un objetivo en sí mismo.

De este modo, hay que tener claro que las empresas se tienen que servir de los sistemas de Inteligencia Artificial para funcionar de manera inteligente, aprovechar sus datos y mejorar su rentabilidad. Las empresas no necesitan la IA para convertirse en algo nuevo, que aún no comprenden. La necesitan para desarrollar sus fortalezas y convertirse en lo que ya son, pero mejor.

Así, la mejor forma de empezar es preguntándose:

La Inteligencia Artificial puede ayudar a conseguir todas estas cosas y mucho más. Pero para tener éxito, esta debe formar parte de un plan de negocios general, y no al revés.

A medida que la IA se vaya incorporando en el plan de negocios, hay que pensar qué puede y qué no puede hacerse con ella,  qué pasos hay que seguir y qué problemas pueden darse durante su adopción. La Inteligencia Artificial puede hacer grandes cosas, pero es importante verla desde un punto de vista realista, entendiendo los desafíos que supone su uso y adopción

¿QUÉ HACE BIEN LA INTELIGENCIA ARTIFICIAL?

Lo primero es entender qué hace bien la IA, y tener claro dónde puede ser más efectiva.

La IA es muy buena para resolver problemas específicos y bien definidos.

Esto es así porque se ha visto que los algoritmos de Inteligencia Artificial funcionan muy bien en entornos controlados y bien definidos.

Nos fijamos en uno de los casos de aplicación IA que más se habla actualmente, los vehículos autónomos: Waymo (Google / Alphabet), Uber, Tesla y otros. Podremos ver que es un problema específico, no bien definido. Sin embargo, puede dividirse en varios problemas específicos, bien definidos: planificar una ruta, identificar señales, detectar obstáculos (otros vehículos y peatones), controlar los frenos, etc. Problemas que en conjunto pueden parecer mucho, pero al verlos por separado y poder acotarlos, pueden ser resueltos con técnicas de Inteligencia Artificial.

Otro caso, que sirve para explicar este principio, es el caso de Chorus.ai , una IA que es capaz de transcribir las llamadas que escucha e identificar y anotar los elementos importantes que haya en las mismas. Sus creadores no han tratado de construir una máquina que “haga ventas”, un objetivo que no está ni bien definido ni es específico. Lo que hicieron fue transcribir una conversación (un problema difícil pero bien entendido) y buscar señales específicas que indiquen elementos interesantes en esa transcripción. Siendo así, un asistente de los vendedores, que realiza tareas rutinarias pero necesarias.

Potenciando a los humanos

Otro aspecto clave a tener en cuenta, cuando se va hacer uso de la Inteligencia Artificial, es hacerlo de forma que sirva para potenciar y ayudar a los humanos, no para reemplazarlos. Usar la IA para reemplazar a los humanos probablemente nos llevará a que hagamos un mal uso de la misma. Y, con esto, a que no aprovechemos las oportunidades que se abren, a la hora de hacer una buena integración de la IA con los humanos.

Si se usa la Inteligencia Artificial para la detección de fraudes, probablemente aumentará la cantidad de posibles casos detectados y no se necesitarán tantas personas para analizar los datos, pero sí para gestionar los casos que encuentren. De este modo, la IA puede usarse para realizar la parte más monótona y repetitiva del trabajo, y así poder dedicar más personal (y con un mayor nivel de cualificación) a las partes menos rutinarias y más creativas.

DIFICULTADES PARA SU IMPLEMENTACIÓN

Otro aspecto importante es entender las dificultades que pueden presentarse a la hora de llevar a cabo el desarrollo e integración de la IA, y los costes que ello supone.

Política de gestión de datos

El entrenamiento de un modelo de Inteligencia Artificial requiere datos. Probablemente muchos datos. La realidad es que es poco probable que en el punto de partida se tengan datos útiles si no se ha definido y puesto en marcha, previamente, una buena política de gestión de datos en la empresa.

Los pasos necesarios para desarrollar una buena política de gestión de datos para Inteligencia Artificial son:

  1. Identificar fuentes de datos
  2. Crear canales de transferencia de datos
  3. Limpiar y preparar datos
  4. Identificar los indicadores potenciales en los datos
  5. Y medir el resultado de los mismos

Entrenamiento y Reentrenamiento

Para obtener un buen modelo de Inteligencia Artificial, primero hay que entrenar los algoritmos que lo componen. Este entrenamiento consiste en ir alimentando a los algoritmos con un conjunto de datos “conocidos” (se sabe lo que ha pasado, es decir, quién ha hecho fraude y quién no), hasta que se obtengan unos resultados adecuados. El resultado de este proceso será un modelo, es decir, conjunto de algoritmos que han sido entrenados con datos. A continuación, a este se le pasarán un conjunto de datos “no conocidos” (prueba en real), y se verá si los resultados obtenidos siguen siendo satisfactorios. Si lo son, se daría por finalizado el entrenamiento, si no, habría que hacer modificaciones y repetir el entrenamiento.

Así, puede verse que el entrenamiento del modelo, puede requerir una parte importante los recursos dedicados a la fase de desarrollo de un proyecto de Inteligencia Artificial. Por tanto, a la hora de plantearse la realización de cualquiera de estos proyectos, hay que tener en cuenta el tiempo de entrenamiento, y que este puede verse afectado por una serie de problemas, entre los que se incluyen:

Los sistemas de Inteligencia Artificial son inescrutables

Los sistemas de IA tienen la reputación de ser inescrutables, es decir, dan resultados, pero normalmente no pueden decir por qué han dado esos resultados. En algunos casos, esto no es demasiado importante, pero en otros, como es el caso del análisis de imágenes médicas, el porqué es tan importante como el qué.


LO SIGUIENTE

Si todo lo que hemos visto hasta ahora te ha quedado claro y sigues con la idea de embarcarte en el mundo de la IA, puede decirse que estás listo para empezar la planificación de tu proyecto de Inteligencia Artificial, que tiene que ir acompañada de un buen equipo humano, que desarrolle unas buenas prácticas para trabajar con datos, tiempo suficiente para realizar los entrenamientos de los modelos y la consciencia de los problemas que pueden darse en el camino. No hay nada mágico en la IA.

MÁSTER EXPERTO BIG DATA ANALYTICS

Gracias al Master en Big Data Analytics 100% Online tendrás amplios conocimientos sobre las herramientas y técnicas analíticas necesarias para la modelización de los principales retos de negocio, con el fin de mejorar la toma de decisiones a través de los datos y el conocimiento.

Dejando a un lado el Internet Of Things y las Smart Cities, otro de los aspectos que facilita el análisis rápido de grandes volúmenes de datos es el deep learning y la inteligencia artificial, software capaz de analizar datos en tiempo real y adelantarse a futuros problemas, aprendiendo a sacar sus propias conclusiones sin necesidad de un programador.

La prueba de que el sector de la inteligencia artificial es uno de los más prometedores en la tecnología de la información es el interés de las grandes empresas por adquirir startups del sector, como demuestra la creciente actividad de Google, Facebook, Apple, Intel o Amazon en este negocio, con cuatro compras destacadas en lo que llevamos de año.

Tal como indica el interesante artículo de CB Insights, más de 20 empresas privadas dedicadas a tecnologías avanzadas de inteligencia artificial han sido adquiridas por las grandes corporaciones en los últimos 3 años.

Inteligencia Artificial

Inteligencia Artificial - línea cronológica de adquisiciones / FUENTE: CB Insights

Atendiendo a los rumores sobre un nuevo algoritmo para el buscador de Google capaz de reconfigurarse a sí mismo en función de las necesidades, el rey de los buscadores destaca como líder de la inversión en Inteligencia Artificial. De hecho, es el que más empresas ha adquirido, un 25% del total de empresas compradas. Entre estas incorporaciones destacan la compra en 2013 de DNNResearch, empresa especializada en Deep Learning y redes neuronales y fundada en la Universidad de Toronto, que le permitió a Google mejorar su buscador de imágenes. También destaca la adquisición en 2014 de la compañía británica DeepMind Technologies por unos 600 millones de dólares, cuya tecnología pudimos ver todos hace unos meses cuando el ordenador venció al campeón mundial del juego tradicional chino “Go”.

Amazon es otra de las multinacionales que compiten en el sector de la inteligencia artificial, enfocando su atención en el machine learning, con la adquisición de la californiana Orbeus. Salesforce se apuntó a la carrera en 2016, con la adquisición de dos compañías: MetaMind y el servidor de código abierto para machine learning ProductionIO.

Otras adquisiciones son, por ejemplo, Vision Factory, empresa dedicada al reconocimiento de textos y objetos mediante deep learning, por parte de Facebook; o Whetlab y Madbits por Twitter, dedicadas, respectivamente, a acelerar y mejorar los procesos de machine learning y a la identificación del contenido de imágenes mediante algoritmos de Deep Learning.

Si la inteligencia artificial es tu campo de interés, apúntate a nuestro máster Big Data, que culmina con un módulo de algoritmos avanzados de Deep Learning.

chevron-down