Temática

Empleabilidad

Tiempo de lectura

5 minutos

Clave de contenido del artículo

Todos sabemos que las principales competencias técnicas demandadas en las vacantes del sector de Big Data son:

  • Lenguajes de Programación
  • Aprendizaje Automático, IA y Procesamiento del Lenguaje Natural (NPL)
  • Análisis cuantitativo
  • Minería de Datos
  • Resolución de problemas
  • Bases de Datos SQL y NoSQL
  • Estructura de Datos y Algoritmos
  • Interpretación y Visualización de Datos

Paloma Romero

EMEA Talent and Culture Lead

Autora del artículo

En un mercado laboral tan competitivo como el actual, es importante que los que buscan empleo en Big Data tengan una idea clara de lo que las empresas buscan.

Un informe del Boston Consulting Group sitúa a España como el octavo país "más atractivo" del mundo para el traslado de trabajadores tecnológicos, por detrás de Francia y Suiza. Esto lo facilita la alta calidad de vida en España y nuestra cultura.

Asimismo, en España, el 70% de los trabajadores tecnológicos son hombres, y sólo el 30% mujeres. Algunas instituciones, como la Universidad de Granada, están desarrollando iniciativas para eliminar esta brecha, pero todavía hay que trabajar mucho para lograr un equilibrio.

Prioridades en la demanda del sector Big Data según publica en varias entrevistas el MIT

Jonathan Lowe, Jefe de Ciencia de Datos en Pfizer

Jonathan Lowe aclara que a veces hacemos excepciones y contratamos sin tener todas las habilidades, y nos fijamos en la experiencia en el negocio, "Si alguien dice: 'He trabajado en un laboratorio de calidad durante la mitad de mi carrera y ahora, durante los últimos años, he estado aprendiendo más ciencia de datos', nosotros engulliremos a esas personas".

Yichen Sun, Directora de Ciencia de Datos en Netflix

Por otro lado, según Yichen Sun, "necesitamos a alguien que tenga principios y sea práctico a la vez, que haga las concesiones adecuadas y que sea capaz de articular el 'por qué' de esas decisiones técnicas".

Cerrar la brecha entre el negocio y los datos de una empresa son las principales prioridades, haciendo hincapié en la importancia de traducir con precisión la información obtenida de los datos en estrategias empresariales viables.

Por ello, las funciones actuales centradas en los datos también requieren curiosidad, lo que contribuye a una mentalidad innovadora y orientada a la resolución de problemas. Aunque un experto en datos con una solución en busca de un problema no es algo que rompa el trato, Sun dijo que intentará entrenar a la persona para que entienda que su solución puede ser la aplicación correcta para un problema, pero que puede haber una forma "aún más elegante o incluso más simple de hacerlo".

En relación con esto, Sun también busca a "alguien que sea más reflexivo, que sea capaz de recibir esta retroalimentación de una manera muy productiva y ser adaptable en términos de qué enfoque utiliza."

Nadine Kawkabani, Global Business Strategy Director en  MFS Investment Management

Por último, Nadine Kawkabani declara que la necesidad de competencias interpersonales son ejemplos de cómo han cambiado los puestos de trabajo relacionados con los datos y el análisis, y la cultura asociada. Ya no se trata de trabajar con datos; se trata de garantizar que los datos tengan sentido y que las personas que los manejan entiendan también cómo influyen en la estrategia de la empresa.

"Todos dependemos de todos", afirma Kawkabani. "Puedo plantear la mejor estrategia, pero si no tengo buenos datos, buenos gráficos, datos precisos y datos oportunos e interpretables, no significan nada".

Conclusiones

Tras estas opiniones podemos entonces concluir que en un mercado laboral tan competitivo como el actual, las empresas buscan a los mejores y para ello no solo hay que ser “excelente” en datos, hay que ser también excelente en:

Cualquier empresario buscará a la persona que genere mayor valor añadido a su negocio, que aumente la calidad de lo que hace o que sea capaz de ir más allá de lo esperado… esto es escalable a cualquier sector y a cualquier área, no solo a las relacionadas con los datos. Esto nos lleva a que debemos ser los mejores a nivel técnico y a nivel competencial

Por otro lado, un informe del Boston Consulting Group sitúa a España como el octavo país "más atractivo" del mundo para el traslado de trabajadores tecnológicos, por detrás de Francia y Suiza. Claramente, la alta calidad de vida en España y nuestra cultura facilitan esta posición.

Desafortunadamente sigue existiendo diferencia de género en España, ya que como se ha explicado anteriormente, el 70% de los trabajadores tecnológicos son hombres. Sólo el 30% son mujeres.

Según IESE, a pesar de las elevadas tasas de desempleo juvenil en España, el 75% de las empresas encuestadas afirma estar encontrando importantes dificultades para contratar talento con las competencias adecuadas para cubrir sus necesidades.

Además, el 76% de las empresas señalan una brecha de competencias entre lo que necesitan sus organizaciones y la formación ofrecida por el sistema universitario. Al mismo tiempo, el 79% de las empresas señalan una brecha de competencias en los candidatos con formación profesional.

En las grandes empresas encuestadas se espera que el teletrabajo represente casi el 40% de las horas de trabajo en 2025. Frente a esto, las habilidades de liderazgo de los directivos cobrarán mayor relevancia (según el 88% de las empresas). El resto de la plantilla deberá mostrar más capacidad de aprendizaje y de trabajo en equipo (según el 60% y el 59% de las empresas, respectivamente), entre otras habilidades.

Finalmente, ya que hablamos de la empleabilidad hablemos también de los salarios tomando varias fuentes:

Tématica

Inteligencia Artificial

Tiempo de lectura

7 minutos

Claves de contenido del artículo

Machine Learning

Deep Learning

Foundation Models


Estamos ya en el año 2023, y como podemos constatar en cualquier medio de comunicación, la inteligencia artificial vuelve a estar de moda. ¿Vuelve? Sí, porque en realidad este término se acuñó en el año 1956, y en los casi 70 años de historia que tiene ya esta rama de la tecnología, la misma ha evolucionado a una escala que difícilmente podría haberse pronosticado.

Desde sus inicios, la inteligencia artificial ha perseguido el objetivo de crear máquinas con una inteligencia similar o superior a la nuestra, con el fin de poder delegar trabajo cognitivo en ellas, o como apoyo para poder aumentar nuestra propia capacidad de pensamiento. Pero este objetivo es más un sueño que una meta bien definida porque, ¿qué es en realidad la inteligencia? ¿Cómo la definimos? Y, sobre todo, ¿cómo funcionan nuestros propios cerebros, esos que queremos imitar mediante tecnología? No lo sabemos con precisión.

Álvaro Barbero Jiménez

Chief Data Scientist del Instituto de Ingeniería del Conocimiento (IIC)

Autor del artículo

Es por esta indefinición que el foco de la IA y los métodos para abordarla han ido cambiando a lo largo de estas 7 décadas. En sus inicios, muchos investigadores en IA centraban sus esfuerzos en crear sistemas que pudieran replicar la capacidad de los humanos en tareas intelectualmente complejas: jugar al ajedrez, demostrar teoremas, realizar un diagnóstico médico en base las evidencias… se trataba de una forma concreta de implementar la IA, que hoy conocemos como sistemas expertos, y que tratan de realizar razonamientos empleando una base de datos de conocimientos y reglas, así como un sistema de inferencia basado en la lógica formal. Un ejemplo habitual de este tipo de sistemas sería el que dispone de la siguiente información:

hombre(x) ->mortal(x) (si es un hombre, entonces también es mortal)

hombre(Sócrates)= True (Sócrates es un hombre)

De lo que el sistema puede deducir mediante implicación lógica que mortal(Sócrates)=True (Sócrates es mortal). Esta clase de sistemas llegaron a utilizarse con éxito en campos como el diagnóstico de enfermedades infecciosas en la sangre. No obstante, en general este tipo de sistemas de IA resultaban ser difíciles de construir, dado que es necesario contar con expertos en la materia con los que colaborar para formalizar su conocimiento y métodos de trabajo en reglas formales. Así mismo, su mantenimiento y actualización a nuevas situaciones implicaba revisar su juego de reglas, una tarea que podía llegar a ser muy costosa en sistemas de gran tamaño.

Por otra parte, en torno a la misma época en la que se descubrían las limitaciones de los sistemas expertos, se llegó a una conclusión inesperada en cuanto al funcionamiento de la inteligencia: que las tareas que a los humanos nos resultan cognitivamente complejas, como los razonamientos matemáticos o la lógica formal, ¡son en realidad muy sencillas de implementar en un computador! Especialmente cuando se comparan contra el desafío de desarrollar una máquina con las capacidades sensoriales y motoras que puede tener cualquier niño con un desarrollo normal. Este hecho se recoge en la famosa paradoja de Moravec, y ha demostrado ser uno de los mayores obstáculos en del desarrollo de la IA: que las habilidades que a nosotros nos resultan intuitivas y naturales son las más difíciles de replicar de manera artificial.

Machine Learning

Una alternativa a los sistemas expertos de mayor aplicabilidad práctica y que se ha desarrollado con mucha solidez desde la década de los 80 es el aprendizaje automático o machine learning. En este tipo de IAs la clave radica en recopilar el conocimiento del experto no como una serie de reglas formales, sino como ejemplos que demuestren su forma de actuar. De este modo, podemos compilar una base de datos formada por casos médicos, en la que para cada caso recogemos la información utilizada el experto médico para su examen (constantes, analíticas, etc…), así como su diagnóstico, y el sistema de IA podrá aprender a imitar su forma de proceder. Dentro de este tipo de IA caben toda una variedad de algoritmos que afrontan este problema de aprendizaje empleando diferentes aproximaciones estadísticas: vecinos próximos, árboles de decisión, métodos de ensemble, máquinas de vectores de soporte, y muchos otros más.

Deep Learning

Uno de los métodos que ha destacado especialmente durante la última década han sido los basados en redes neuronales artificiales, hoy día también conocidos como Deep Learning. Aunque en realidad este tipo de IAs llevan en desarrollo desde incluso antes de que se acuñara el término “inteligencia artificial”, no fue hasta 2010 y años posteriores cuando se descubrieron las estrategias clave para poder construir sistemas de esta clase a gran escala: de ahí el calificativo “Deep”.

En esencia, las redes neuronales son un subtipo del aprendizaje automático, en el que una serie de neuronas artificiales imitan superficialmente el comportamiento de una neurona real, y se encargan de realizar la tarea del aprendizaje en base a los datos. Su principal ventaja frente a otros modelos de aprendizaje automático es su flexibilidad, ya que pueden construirse redes desde unas decenas de neuronas hasta miles de millones, escalando así su capacidad para aprender de bases de datos de tamaño masivo.

Además, esta flexibilidad del Deep Learning ha permitido a los investigadores en IA desarrollar “neuronas” especializadas en el tratamiento de datos no estructurados: imágenes, vídeos, textos, audio, etc… si bien esta clase de redes neuronales artificiales cada vez están más alejadas de la biología real, han demostrado ser tremendamente prácticas para abordar problemas muy complejos como son la detección de objetos de interés en imágenes (ej: personas, coches, …), la traducción automática entre idiomas, o la síntesis de voz. Con este hito se ha logrado abordar de manera muy efectiva la clase de desafíos sobre los que la paradoja de Moravec nos alertaba: aquellos que nos resultan intuitivos a nosotros, pero de difícil implementación en una máquina.

Foundation Models

¿Y qué podemos decir de estos últimos años? Sin duda, el avance más significativo en IA ha venido de la mano de los modelos base o foundation models. Se trata de un paso más en las redes neuronales artificiales, en el que redes de inmenso tamaño aprenden a modelar la dinámica de un proceso complejo mediante el análisis de bases de datos masivas.

Por ejemplo, un modelo base del lenguaje español es aquel que aprende cómo se estructura el idioma español y cómo suele usarse, mediante el procesado de gigabytes de textos escritos en este idioma. Este modelo no persigue un objetivo concreto, más allá de asimilar la estructura del lenguaje. Pero precisamente por eso puede alimentarse de cualquier texto escrito en el idioma, sin necesidad de que este haya sido preparado y validado por un experto, abriendo así la puerta a que la red neuronal pueda aprender de… básicamente todo el material que podamos suministrarle de Internet.

La pregunta que surge entonces es, ¿y para qué sirve un modelo así, si no tiene un objetivo práctico concreto? Pues porque como indica su nombre, sirven como base para crear modelos que apliquen a tareas concretas.

Por ejemplo, un modelo base del lenguaje español puede reajustarse a la tarea de analizar las emociones expresadas en un tweet, usando un conjunto de datos de tamaño medio con ejemplos de cómo hacer esta tarea. La ventaja de esta aproximación respecto de crear una red neuronal nueva que aprenda directamente de los datos es que el modelo base adaptado tendrá una efectividad mucho mayor, y requerirá de un juego de datos más pequeño para aprender a realizar su tarea. El motivo es que el modelo base ya conoce cómo se estructura el lenguaje español, y ahora solo le queda aprender cómo extraer la emoción de un texto en español.

Puede que los modelos base nos suenen a algo extraño, pero lo cierto es que están detrás de las IAs más famosas en la actualidad: GPT-3, ChatGPT, GPT-4, DALL-E 2, Stable Diffusion, … todas ellas utilizan de alguna manera u otra este concepto, y nos demuestran cómo aprender de fuentes de datos a tamaño Internet nos lleva a un tipo de Inteligencia Artificial muy superior a los vistos hasta ahora.

Deep Reinforcement Learning

Con todas estas IAs a la carrera, demostrando resultados cada vez más impresionantes, la pregunta que cabe hacerse es: ¿qué podemos esperar a partir de ahora? Internet es una fuente masiva de información, pero al mismo tiempo es limitada cuando se compara con la percepción que los humanos tenemos del mundo. Los estudios sobre modelos base han demostrado que a mayor número de datos podemos observar, mayor es la capacidad del sistema de IA resultante. Por tanto, el siguiente paso natural sería permitir que estos sistemas puedan aprender también de observaciones que hagan del mundo real, y más aún, que consigan a través de su propia experiencia. Este es el objetivo del aprendizaje por refuerzo profundo o deep reinforcement learning, el cual persigue que una red neuronal artificial pueda experimentar con su entorno y mejorar en una tarea a base de observar los resultados de sus experimentos.

Un ejemplo de este tipo de Inteligencia Artificial es AlphaZero, la cual consiguió alcanzar un rendimiento sobrehumano en el juego de tablero Go en tan solo 24 horas de aprendizaje, u OpenAI Five, que logró derrotar al equipo campeón del mundo en el e-sport DOTA2. Y fuera del mundo de los juegos, se han aplicado incluso para mejorar el control de un reactor experimental de fusión nuclear. ¿Será este el siguiente paso en la evolución de la IA? Aunque hoy día son sistemas muy costosos y complejos de aplicar en proyectos prácticos, alguna de las ideas que subyacen a su funcionamiento ya han sido incorporadas en ChatGPT y GPT-4, por lo que la tendencia parece clara.

Conoce más sobre IA en nuestro Máster Executive Inteligencia Artificial y Big Data

100% online

Más información

En este artículo creado por José Manuel Sanz Candales , vamos a conocer qué es el DLR.

Los gestores de las redes eléctricas de transporte y distribución deben tener en cuenta los valores de capacidad de sus líneas eléctricas para cumplir con las normas establecidas al respecto. Tradicionalmente se han utilizado valores constantes estacionales, pero el avance de la tecnología está haciendo evolucionar estos valores hacia el cálculo dinámico de la capacidad de las líneas (DLR).

El DLR (Dynamic Line Rating) se basa en la estimación en tiempo real de la capacidad de las líneas de transporte de energía eléctrica (CdT), en función de distintas variables medibles (condiciones climáticas, medidas de temperatura del conductor en tiempo real, flecha del vano, etc.) así como su previsión para períodos futuros. En contraposición se encuentra el uso de una CdT estacional, con variables climatológicas fijas en cada estación, que, por lo general, resulta más conservadora, y que es la que se ha venido utilizando de manera generalizada en la actualidad.

Simplificadamente, hacer DLR consiste en predecir o calcular la intensidad máxima que puede transportar una línea en un periodo de tiempo determinado, atendiendo al valor de ciertas variables ambientales instantáneas, respetando en todo momento los límites térmicos de la instalación, y, en consecuencia, garantizando las distancias de seguridad establecidas en los reglamentos, sin provocar en la instalación ni una degradación ni un envejecimiento prematuro, al ser siempre las condiciones de funcionamiento coherentes con límites técnicos, como puede ser el fenómeno de recocido en los materiales.

La CdT de una línea aérea vendrá marcada por el vano (tramo entre dos apoyos consecutivos) que primero incumpla los límites mencionados anteriormente. En consecuencia, operar líneas con DLR significa estimar y monitorizar las condiciones de la línea a lo largo de todo su trazado, realizar un tratamiento de la información para determinar la intensidad máxima admisible en cada instante, así como establecer modelos de previsión que permitan predecir los valores estimados de capacidad de transporte para las próximas horas u otros horizontes de más largo plazo.

Para disponer de una predicción de capacidad de transporte, es necesario disponer de predicciones de variables medioambientales. De estas variables, la que más impacto tiene por su variabilidad e influencia es el viento. Obtener previsiones de viento con precisión suficiente es complejo y la Inteligencia Artificial puede ser de gran ayuda en este ámbito. Adicionalmente, dado que el viento es uno de los mayores problemas de la red de transporte en cuanto a averías graves por caída de torres y conductores, una estimación precisa y con antelación suficiente, ayudará también tanto en la optimización del diseño de apoyos como para predecir posibles afecciones por cambio en condiciones ambientales o de comportamiento de las supuestas en históricos.

Para entrenar estos modelos de IA, se requiere disponer de datos históricos de estaciones meteorológicas que recojan los valores reales en determinados puntos de las líneas eléctricas. Adicionalmente, la recepción de los datos de dichas estaciones meteorológicas en tiempo real (mediante uso de IoT) en los sistemas de predicción, permite utilizarlas para realizar predicciones más precisas en los primeros horizontes (< 6 horas) utilizando, por ejemplo, Redes Neuronales Recurrentes.

Jose Manuel Sanz Candales

 Científico de Datos - Departamento de Modelos para la Operación del Sistema en Red Eléctrica

Red eléctrica

linkedin.com/in/jose-manuel-sanz-candales-96b801144

@Candales_Jose

¡Si te ha gustado el contenido de este artículo no te olvides de suscribirte a la newsletter!

Más de 5 000 millones de personas participan a diario en interacciones en red que generan algún tipo de dato. Para 2025, esta cifra sobrepasará los 6 000 millones, lo que supone que el 75% de la población mundial formará parte de una gran muestra cuyo comportamiento estará en permanente estudio. Así lo ponen de relieve Seagate e IDC en su informe The Digitization of the World – From Edge to Core.

Este escenario que se nos dibuja para dentro de cinco años, con más de 150 000 millones de dispositivos interconectados -muchos de ellos recogiendo datos de manera ininterrumpida y en tiempo real- es un terreno abonado para el avance del Big Data y el Internet of Things (IoT) o Internet de las Cosas. ¿Qué puede ofrecernos la colaboración entre estos dos paradigmas?

Internet of Things (IoT): ¿qué es y cómo funciona?

Según el glosario de la consultora Gartner, el Internet of Things (IoT) o Internet de las cosas se define como una red de objetos interrelacionados y equipados con tecnología para la intercomunicación, la captura de señales o la interacción con el entorno. A día de hoy, el IoT se despliega en forma de millones de cámaras, grabadoras, ordenadores, móviles, radares, sensores, drones, códigos, termómetros, higrómetros, etc., que toman registros de lo que sucede y los envían a los centros de procesamiento.

Estos dispositivos presentan diferentes niveles de sofisticación. Los más sencillos como, por ejemplo, las etiquetas RFID, se emplean con fines de identificación. Otros, más complejos, actualizan su ubicación o son programables a distancia. Finalmente, hay nodos que, incluso, toman decisiones y las ejecutan por sí mismos si se cumplen ciertas condiciones.

Entonces, ¿qué relación hay entre el Big Data y el IoT?

La actividad del IoT da como resultado una cantidad ingente de datos que es preciso recopilar, validar, almacenar, procesar y analizar para extraer valor, es decir, conclusiones que nos permitan ampliar nuestro conocimiento y basar nuestros siguientes pasos. Es aquí donde, justamente, entra en juego el Big Data para, haciendo un símil con el mundo financiero, transformar en neto aquello que estaba en bruto.

IoT & Big Data: sectores de aplicación

La alianza entre Big Data e IoT proporciona ventajas en dos esferas: la industrial, con la implementación de soluciones B2B; y la del gran consumo, con desarrollos B2C que mejoran nuestra vida diaria en lo personal y en lo doméstico.

Big Data e IoT, una alianza cargada de potencial de futuro

Extraer beneficios de la colaboración entre Big Data e IoT es cada vez más sencillo gracias a la suma de otras tecnologías, como el 5G, que ahorra ancho de banda en las operaciones y reduce la latencia en la transmisión de datos; y el edge computing, que favorece el procesamiento descentralizado de la información de manera que, cuando esta llega al nodo central de la red, lo hace ya desprovista de ruido y preparada para someterse a un proceso de análisis en Big Data.

Esta experimentación nos hace pensar en un presente y un futuro muy cercano en los que se registrarán considerables avances en campos como:

¿Te gustaría formar parte de la revolución del Big Data y el IoT que ya está en marcha? Nuestro Máster Experto en Arquitectura Big Data te prepara para desarrollarte profesionalmente en este sector, en el que podrás trabajar como líder de proyectos en sistemas intensivos de datos o como gestor de infraestructuras de Big Data, entre otras especializaciones. ¿A que suena bien? Pues no lo dejes para mañana: contacta con nosotros hoy mismo y te ofreceremos un asesoramiento personalizado.

La pregunta que muchos os haréis después del artículo anterior es ¿cómo plantea la doctora Feldman Barrett la construcción de emociones? Como comentamos en Innodata...

The Deconstructed Emotion

Nuestro cerebro tiene una vida difícil; se pasa el tiempo recluido en nuestro cráneo. Tiene además que desempeñar la misión de cuidar a nuestro cuerpo, el cual a su vez es un mecanismo complejo, lleno de recursos y difícil de mantener. Justamente este balance o mantenimiento de los recursos del cuerpo, es lo que se conoce como Body Budget. De esta manera, cuando se producen alteraciones en este Body Budget, nuestro cerebro será el encargado de restablecer el equilibrio.

Cuando nuestro Body Budget cambia, surgen en nosotros unos sentimientos básicos denominados Affects y que son diferentes de las emociones. Como podemos ver a continuación tienen dos dimensiones una en el eje X (valence) y otra en el eje Y (arousal):

teoría-de-las-emociones-deconstruidas-hacia-las-máquinas-que-detectan-emociones-3

Cómo funciona el Body Budget

Aquello que impacte nuestro Body Budget de forma positiva, motivará un Affect positivo. Ocurrirá al contrario con aquello que impacte nuestro Body Budget de forma negativa.

Hay que tener en cuenta que no nacemos ya sabiendo cómo controlar nuestro Body Budget, sino que vamos aprendiéndolo desde que somos bebés. Así es como nuestro enclaustrado cerebro puede llevar a cabo con éxito la misión de mantener nuestro Body Budget: en base a

Con todo esto, el cerebro es capaz de mapear los estímulos asociados a una cierta situación, con una experiencia pasada y actuar según un modelo aprendido. Y lo más importante, de manera predictiva, no reactiva.

Estrategia predictiva del cerebro

Esto es muy interesante: nuestro cerebro se guía por una estrategia predictivo-correctiva, no de estímulo-respuesta. La doctora Barrett y otros científicos, coinciden en que el primer tipo de estrategia es mucho más eficiente y adaptativo que el segundo. En este sentido, por ejemplo, nuestro cerebro debe hacernos sentir sedientos antes de que nos deshidratemos por completo o también hacernos sentir temor al borde de un acantilado, no cuando ya estemos cayendo.

En resumen, los modelos elaborados por nuestro cerebro se basan en experiencias pasadas, tienen como objetivo regular el Body Budget y tratan de predecir lo que va a ocurrir en nuestro entorno a cada momento. En base a esa predicción, nuestro Body Budget se modificará y sentiremos un Affect.

Las emociones

Ahora vienen las emociones: la doctora Barret las define como conceptos orientados a objetivos o metas, que construimos basándonos en experiencias pasadas.

Pongamos como ejemplo el caso de que vamos conduciendo y alguien se cruza inesperadamente con su coche delante nuestro provocándonos frenar inesperadamente. La emoción que construiremos dependerá de lo que nuestro cerebro prediga que está ocurriendo en nuestro entorno, dentro de nosotros y también de nuestro objetivo. En este caso, si lo que predecimos es que alguien intentó herirnos o que no valoró nuestra vida, nuestro Body Budget cambiará, experimentaremos un Affect de agitación y tocaremos el claxon con el objetivo de poner de manifiesto que nosotros importamos y que no nos hace ninguna gracias que atenten contra nuestra integridad.

Pero si lo que predecimos es que la persona que se ha cruzado ante nosotros tiene que ir con urgencia al hospital, nuestro Body Budget cambiará, permaneceremos tranquilos y facilitaremos la maniobra al conductor de delante. Habremos construido la emoción de simpatía o empatía.

En definitiva, la doctora Feldman describe las emociones como prescripciones de las acciones. Nos indican cómo debemos actuar de cara a conseguir un determinado objetivo.

Conclusiones

Esto es solamente un resumen de una teoría, compleja y no demasiado intuitiva, pero con bastante apoyo en la comunidad científica. ¿Servirá esta teoría para sentar las bases de un verdadero reconocimiento de emociones en los modelos de machine learning? Pensemos que, si realmente queremos que una máquina sepa cómo se construyen las emociones, tendría que tener la tarea de regular un Body Budget y para ello necesitaría algo parecido a un cuerpo… ¡interesante!

MÁSTER EXPERTO BIG DATA ANALYTICS

Gracias al Master en Big Data Analytics 100% Online tendrás amplios conocimientos sobre las herramientas y técnicas analíticas necesarias para la modelización de los principales retos de negocio, con el fin de mejorar la toma de decisiones a través de los datos y el conocimiento.


Alejandro Arranz. Data Engineer en datahack

Vivimos en una época en la cual, gracias a la nueva venida de la inteligencia artificial, se ha conseguido que las máquinas consigan resultados muy buenos en problemas que, hasta hace no mucho, creíamos que solo los humanos podíamos resolver. Un claro ejemplo son los relacionados con visión que actualmente se abordan en el ámbito de la Visión Artificial.

El hecho de que una máquina “sea capaz” de analizar imágenes del mundo real, nos ha llevado a intentar extrapolar esta capacidad a la relación máquina-humano. Intentamos que no solo sea capaz de identificar, por ejemplo, cuando se encuentra ante un ser humano, sino que además pueda determinar la emoción que en ese momento está experimentando la persona.

Para los que no lo sepáis, en datahack labs también nos hemos enfrentado a este problema en el proyecto DIA4RA (enlace aquí al diario de AIDA). Lo hemos hecho apoyándonos en uno de los datasets de cabecera utilizado para pruebas de concepto relativas al reconocimiento de emociones en rostros humanos: el FER 2013, que contiene imágenes de rostros humanos en escala de grises, etiquetadas con la emoción a la que representan (alegría, tristeza, neutro, enfado, miedo, asco). Máquinas que detectan emociones

Los resultados que obtuvimos valieron para, como mucho, hacer una pequeña aplicación que, conectada a una cámara, intentara determinar la emoción de la persona que se pusiera delante en base a lo que esta exagerara el gesto… algo fallaba terriblemente.Máquinas que detectan emociones

Una charla… en las oficinas de Google

Nuestro compañero Rubén Martínez (@eldarsilver), dio con una charla en la que la doctora Lisa Feldman Barrett expuso ante ingenieros de Google, evidencias tan demoledoras como esta imagen a continuación en la que muestra en el eje X, las expresiones faciales que se presuponen a emociones como enfado, asco, sorpresa, alegría, tristeza y miedo:

teoría-de-las-emociones-deconstruidas-hacia-las-máquinas-que-detectan-emociones

En el eje Y, figuran las evidencias basadas en diversos experimentos que reflejan la frecuencia con la que las personas muestran esas expresiones mientras experimentan la emoción correspondiente. Como vemos, no es tan frecuentemente como creíamos. Por ejemplo, a través de dieciséis estudios diferentes, esa cara de ojos saltones y boca entreabierta situada en el extremo derecho del eje X solamente representa miedo en un 9% de las ocasiones… Y en ciertas partes del mundo (como en las Islas Trobriand de Papua Nueva Guinea) se considera una cara de enfado, de amenaza. Máquinas que detectan emociones

¿Qué ocurre cuando, en los muchos estudios al respecto, distintos sujetos de prueba ven estas expresiones faciales? ¿Qué emoción asocian a las mismas? Veámoslo en la barra azul:

teoría-de-las-emociones-deconstruidas-hacia-las-máquinas-que-detectan-emociones-1

El problema viene de que, cuando abordamos la detección de emociones desde el prisma “tradicional”, estamos considerando las barras azules. Por decirlo de otra manera: estamos asumiendo que cuando, por ejemplo, una persona arruga el morro, está experimentando una emoción de asco, de profundo desagrado, como si realmente existiera una correspondencia 1 a 1 entre un gesto concreto y una emoción concreta.

Hacia una nueva forma de detectar emociones

Después de esto, la pregunta que cae por su propio peso es… Si la realidad está representada por las barras blancas, ¿por qué las barras azules son tan grandes en comparativa? Es decir, ¿por qué las personas asociamos con tanta frecuencia esas expresiones con esas emociones?

Para responder a est,o hay que echar un vistazo al tipo de material que se utiliza para preguntar a las personas que participan en los estudios que dan lugar a las barras azules:

teoría-de-las-emociones-deconstruidas-hacia-las-máquinas-que-detectan-emociones-2

Como vemos, reciben una cara con una lista de palabras de entre las cuales se les pide que escojan una. En este caso, este rostro es calificado como “Angry” el 67% de las veces, pero si se retiran las opciones y se da libertad a la persona para categorizar la expresión, solo el 36% de las veces se afirma que esa es una cara de enfado.

Por supuesto todo esto no quiere decir que la cara no tenga ningún tipo de peso a la hora de determinar la emoción de una persona, sino que nuestro cerebro mete muchos otros ingredientes en la coctelera antes de inferir dicha emoción: hay todo un contexto que entra en juego y que desaparece por completo en los experimentos anteriormente mencionados, de los cuales, por otra parte, salen algunos de los datasets que utilizamos posteriormente para tratar de abordar el gran melón de la detección de emociones. Es curioso que en nuevas versiones del FER 2013, las imágenes de expresiones faciales tengan más de una etiqueta o, lo que es lo mismo, se les haya asociado más de una emoción posible.

En el próximo artículo, veremos cómo abordar esto.


Alejandro Arranz. Data Engineer en datahack

MÁSTER EXPERTO BIG DATA ANALYTICS

Gracias al Master en Big Data Analytics 100% Online tendrás amplios conocimientos sobre las herramientas y técnicas analíticas necesarias para la modelización de los principales retos de negocio, con el fin de mejorar la toma de decisiones a través de los datos y el conocimiento.

MLlib o Spark MLlib es la librería de Machine Learning (ML) de Apache Spark. El framework de computación distribuida que incorpora esta librería permite hacer uso de una serie de algoritmos de Machine Learning.

Lo interesante de todo esto, es que los algoritmos de Machine Learning que están implementados dentro de MLlib pueden ser escalados y paralelizados, aprovechando toda la base de Spark.

Dentro de MLlib podemos encontrar dos APIs:

El cambio de pasar de API basada en RDDs a otra basada en DataFrames, se debe a que estos últimos unas estructuras de datos más rápidas y fáciles de manejar.

MLlib la biblioteca de Machine Learning de Spark

Spark MLlib dispone de los siguientes herramientas:

Dentro entre todas estas, cabría destacar las siguientes:

Estadística Básica

Incluye las técnicas de machine learning más básicas, como:

Algoritmos de Clasificación y Regresión

Los problemas de aprendizaje supervisado son aquellos en los que existe una variable explícita, algo concreto: edad, fuga, color de pelo… a predecir.

Para aprender a predecir dicha variable, tendremos que enseñar al modelo un histórico pasado, del cual ya sabemos la respuesta, es decir, se utilizan datasets etiquetados, en los que ya se tiene información acerca de lo sucedido. Es decir, para crear un modelo de detección de fraude, será necesario contar con un conjunto de datos donde se sepa quién ha hecho fraude y quién no.

Los supervisados se dividen en dos categorías, clasificadores y regresores, dependiendo de cómo sea la variable a predecir.

En los de clasificación la variable a predecir es una categoría o clase (valor categórico o discreto), por ejemplo: rubio/moreno/pelirrojo, fuga/no-fuga de cliente, software malicioso/no-malicioso, etc. En estos, el modelo da como resultado un valor de probabilidad para cada una de las categorías disponibles (distribución de probabilidad).

Para el caso de la regresión, la variable a predecir es numérica (normalmente continua pero no es estrictamente necesario), por ejemplo: edad, altura, valor de una casa, número de Gb que va a gastar un cliente, etc.

En Spark MLlib están implementados muchos de estos algoritmos, tal y como podemos ver en la siguiente tabla, obtenida de su documentación oficial:

MLlib la biblioteca de Machine Learning de Spark

Sistemas de Recomendación

Un sistema de recomendación es una subclase de un sistema de filtrado de información que busca predecir la "calificación" o "preferencia" que un usuario daría a un elemento. Se han vuelto muy populares en los últimos años y se utilizan en muchas áreas que incluyen: películas, música, noticias, libros, artículos de investigación, búsquedas, etiquetas sociales y productos en general.

Se pueden clasificar según la forma en que generen la lista de recomendaciones:

Spark MLlib permite el uso de filtros colaborativos, a través del algoritmo ALS (alternating least squares).

Clustering

Los algoritmos de clustering son capaces crear una serie clústeres o grupos de observaciones que son similares entre sí.

Hay dos tipos de algoritmos de clustering:

Spark MLlib, permite de los siguientes algoritmos de clustering: K-means, Latent Dirichlet allocation (LDA), Bisecting k-means, Gaussian Mixture Model (GMM). Puedes obtener más información acerca de los mismos en el siguiente link.

Gestión de Features

Spark MLlib dispone de un buen número de algoritmos para  la extracción, selección y transformación de variables. Tienes más información al respecto, en el siguiente link.

Optimization

Spark MLlib disponer de una serie de métodos para optimizar el entrenamiento de los algoritmos, es decir, mejorar su velocidad de entrenamiento sin que haya pérdida en el rendimiento.

Para ver más detalles acerca de estos métodos, consulta el siguiente link.


Y hasta aquí esta introducción esta introducción al MLlib de Spark, en próximas entregas ahondaremos en algunos de los aspectos que se han visto aquí.

MÁSTER EXPERTO BIG DATA ANALYTICS

Gracias al Master en Big Data Analytics 100% Online tendrás amplios conocimientos sobre las herramientas y técnicas analíticas necesarias para la modelización de los principales retos de negocio, con el fin de mejorar la toma de decisiones a través de los datos y el conocimiento.

“Es por las instancias del dataset, hay un problema de overfitting que hace que el modelo no generalice”. O algo así. Esta es una de las primeras frases que escuché cuando empecé a trabajar con científicos de datos y, por supuesto, no entendí nada. Últimamente me he dado cuenta de que les comprendo (al menos cuando me hablan, cuando les oigo hablar entre ellos no entiendo ni papa). Y es que ¡ya es un montón de tiempo rodeada de datahackers!

Si trabajas con científicos de datos y tampoco te enteras de la mitad de lo que dicen, este pequeño diccionario, junto con los términos de Big Data que compartí unos meses atrás, te puede ayudar a entenderles (un poco):

Dataset:

Conjunto de datos del que se dispone para entrenar, validar y probar el sistema. Está compuesto de observaciones o muestras (samples), definidas a su vez por propiedades, características o, siguiendo la terminología más común en inglés, features. Dependiendo de si el dataset está etiquetado o no, cada una de sus observaciones podrá incorporar además el label o target, o lo que es lo mismo, aquello que se desea que el sistema sea capaz de predecir.

Observación o sample:

Cada una de las muestras o elementos que componen el dataset.

Característica o propiedad (Feature):

Cada una de las variables que definen cada observación o muestra del dataset, su naturaleza es diversa. En el caso de modelos de aprendizaje supervisado, se espera que al menos parte de las features que componen el dataset influyan en el label o target.

Objetivo (target)

Variable dependiente, atributo o factor que quieres predecir.

Conjunto de entrenamiento (train set):

Subconjunto de los datos que se usará para entrenar los modelos

Conjunto de validación (validation set):

Subconjunto de los datos que se usará para elegir el mejor de entre todos los modelos entrenados

Conjunto de pruebas (test set)

Subconjunto de datos que se usará para probar el modelo campeón elegido mediante el conjunto de validación. Los datos de este conjunto deben de proceder de la misma distribución que aquellos que el modelo se encontrará una vez se ponga en producción.

Aprendizaje supervisado (Supervised Learning)

Aquel en el que los datos de entrenamiento (train set) que se le pasan al algoritmo, van "etiquetados" o lo que es lo mismo, cada observación incluye la solución deseada (aquello que se desea que el algoritmo prediga) en su target o label.

Aprendizaje No supervisado (Unsupervised Learning)

Aquel en el que los datos de entrenamiento (train set) que se le pasan al algoritmo, no van etiquetados de forma alguna (no hay label o target). El sistema trata de aprender "sin profesor"

Algoritmo

Especificación matemática categórica que resuelve un problema complejo en base a un conjunto de datos inicial. Consiste en múltiples pasos que aplican en orden una serie de operaciones.

Entrenamiento:

Proceso por el que el modelo ajusta sus parámetros internos en base al conjunto de entrenamiento y a la configuración que previamente se le haya aplicado a través de sus hiperparámetros. Normalmente el entrenamiento se realizará tratando de minimizar el error cometido por el modelo sobre el conjunto de entrenamiento, en base a una determinada función de error o función de pérdida.

Parámetros VS Hiperparámetros:

Los parámetros son todos aquellos valores que un modelo se encarga de autoajustarse durante el entrenamiento con el objetivo de ser capaz de aprender a generalizar a partir del dataset recibido.

Los hiperparámetros comprenden aquella configuración del modelo que el programador puede ajustar antes del entrenamiento..

Modelo:

Una representación matemática de un proceso determinado capaz de inferir comportamientos en el dataset de entrenamiento, de forma que estos sean extrapolables a nuevos datos con los que el modelo no haya sido entrenado. En el caso del aprendizaje supervisado (aquel que es habitual cuando el dataset posee además de sus features un label), el modelo será capaz de predecir una categoría (en el caso de un problema de clasificación) o un número (en el caso de un problema de regresión).

Sobreajuste (Overfitting):

Situación en la que el modelo no ha sido capaz de aprender aquellos patrones o comportamientos generalizables o extrapolables de los datos de entrenamiento. Se caracteriza porque el modelo es capaz de comportarse con una precisión cercana a la perfección en el conjunto de entrenamiento. Mientras que su rendimiento es pobre con el resto de los dato: dicho en pocas palabras, el modelo se ha aprendido los datos de memoria. Las razones pueden ser diversas: desde un modelo demasiado complejo para el problema que se pretende abordar o con demasiada "libertad" para ajustar sus parámetros (se suele mitigar con técnicas de Regularización) o también puede ser que se requieran más datos para el problema que se quiere abordar.

Infraajuste (underfitting):

Situación en la que el modelo no ha sido capaz siquiera de aprender aquellos patrones o comportamientos que le permita desenvolverse adecuadamente con el dataset de entrenamiento. Llegados a este punto, conviene plantearse si el tiempo de entrenamiento ha sido suficiente. Si nos hemos pasado aplicando técnicas de regularización o si, quizás, el modelo aplicado es demasiado simple para el problema que se quiere resolver.

MÁSTER EXPERTO BIG DATA ANALYTICS

Gracias al Master en Big Data Analytics 100% Online tendrás amplios conocimientos sobre las herramientas y técnicas analíticas necesarias para la modelización de los principales retos de negocio, con el fin de mejorar la toma de decisiones a través de los datos y el conocimiento.

Implementando la inteligencia artificial (ai) en la empresa. En distintos artículos, hemos visto cómo planificar la integración de la Inteligencia Artificial (IA) en la empresa. En este, veremos cómo ejecutar y llevar a cabo esta planificación. Esta propuesta la hacemos basándonos en nuestros casi tres años de experiencia en el diseño, desarrollo e implementación de este tipo de proyectos y en algunas de las premisas que Andrew Ng, da en su libro “AI Transformation Playbook”.

COMENZANDO DESDE LO PEQUEÑO

Lo primero, es empezar con uno o dos proyectos piloto que sirvan para que la compañía vaya adquiriendo experiencia y conocimientos en este tipo de tecnologías. Estos pilotos tienen que tener la siguientes características:

DIVIDE Y VENCERÁS

Otra cuestión importante, a tener en cuenta a la hora de definir nuestro proyecto es que: un problema puede ser dividido en partes más pequeñas, y más fáciles de resolver. Por ejemplo, si nos planteamos la construcción de una aplicación de Inteligencia Artificial para ayudar al servicio de atención al cliente. A priori, este podría parecernos problema de difícil solución. Sin embargo, la cosa cambia si nos paramos a ver e identificar los procesos que implica:

Así, vemos que se puede descomponer en otros más sencillos y bien definidos, que podrían ser asumidos por una IA.

PONIÉNDONOS EN ACCIÓN

Una vez se tiene claro el tipo de proyecto que se quiere hacer y sus características, la mejor forma de llevarlos a cabo es:

  1. Definir un líder: alguien capaz de tender puentes entre los expertos de Inteligencia Artificial y especialista de negocio, haciendo que ambos mundos se entiendan y colaboren de forma efectiva. Esto asegurará el éxito del proyecto y su influencia en el resto de la organización.
  2. Crear un equipo pequeño: en un primer momento, podríamos pensar que para el desarrollo de un proyecto de IA son necesarias muchas personas. Sin embargo, un piloto de Inteligencia Artificial bien definido se puede hacer con equipo pequeño, entre 5 y 15 personas (depende del proyecto en sí). Esto favorece el trabajo en equipo y facilita la contención y asignación de recursos, entre otras cosas.
  3. Comunicar los avances: cuando el proyecto piloto alcance hitos clave, y especialmente cuando tengan un resultado exitoso, hay que darlos a conocer al resto de la empresa. Con esto, aseguraremos que se reconozca al equipo que lo desarrolla y que se vean los beneficios que aporta el proyecto a la empresa.

De este modo, podemos ver que con las ideas claras y una buena planificación, la implantación de la IA en la empresa no tiene por qué ser algo muy costoso, solo alcanzable para unos pocos. Más bien todo lo contrario, es algo accesible para todo tipo de empresa, que puede mejorar en gran medida los procesos de negocio, reducir los costes y abrir nuevas posibilidades de negocio.

Hasta aquí, el segundo artículo de esta mini-serie, con la que hemos querido compartir nuestras ideas y experiencias, con tod@s aquellos que estéis interesados.

MÁSTER EXPERTO BIG DATA ANALYTICS

Gracias al Master en Big Data Analytics 100% Online tendrás amplios conocimientos sobre las herramientas y técnicas analíticas necesarias para la modelización de los principales retos de negocio, con el fin de mejorar la toma de decisiones a través de los datos y el conocimiento.

Según un informe de McKinsey, la inteligencia artificial (IA) generará un crecimiento de 13 billones de $ en el PIB global para 2030, que se producirá en sectores como la manufactura, agricultura, energía, logística y educación, entre otros. Así, el actual auge de la IA presenta una oportunidad para que los ejecutivos de todas las industrias puedan diferenciar y defender sus negocios. Sin embargo, antes de lanzarse al mundo de la Inteligencia Artificial, hay que entender qué es realmente la IA (se explicó en un artículo anterior de este blog) y qué aspectos hay que tener en cuenta, a la hora de planificar e implementar la IA, de forma exitosa.

Todo esto lo comentaremos en una serie de dos artículos. En este primero, se hablará de cómo planificar la integración de la Inteligencia Artificial en la empresa. En el segundo, la forma de llevarla a cabo.

INTEGRACIÓN DE LA INTELIGENCIA ARTIFICIAL EN LA EMPRESA

Lo primero, antes de todo, es pensar en el negocio, es decir, planificar la integración de Inteligencia Artificial pensando primero en los objetivos de negocio. Así, siempre será mejor incorporar la IA en el plan estratégico de la empresa que construir una estrategia de Inteligencia Artificial en sí misma. Para esto, hay que ver como la IA puede ayudar a conseguir los objetivos de negocio, no convertirla en un objetivo en sí mismo.

De este modo, hay que tener claro que las empresas se tienen que servir de los sistemas de Inteligencia Artificial para funcionar de manera inteligente, aprovechar sus datos y mejorar su rentabilidad. Las empresas no necesitan la IA para convertirse en algo nuevo, que aún no comprenden. La necesitan para desarrollar sus fortalezas y convertirse en lo que ya son, pero mejor.

Así, la mejor forma de empezar es preguntándose:

La Inteligencia Artificial puede ayudar a conseguir todas estas cosas y mucho más. Pero para tener éxito, esta debe formar parte de un plan de negocios general, y no al revés.

A medida que la IA se vaya incorporando en el plan de negocios, hay que pensar qué puede y qué no puede hacerse con ella,  qué pasos hay que seguir y qué problemas pueden darse durante su adopción. La Inteligencia Artificial puede hacer grandes cosas, pero es importante verla desde un punto de vista realista, entendiendo los desafíos que supone su uso y adopción

¿QUÉ HACE BIEN LA INTELIGENCIA ARTIFICIAL?

Lo primero es entender qué hace bien la IA, y tener claro dónde puede ser más efectiva.

La IA es muy buena para resolver problemas específicos y bien definidos.

Esto es así porque se ha visto que los algoritmos de Inteligencia Artificial funcionan muy bien en entornos controlados y bien definidos.

Nos fijamos en uno de los casos de aplicación IA que más se habla actualmente, los vehículos autónomos: Waymo (Google / Alphabet), Uber, Tesla y otros. Podremos ver que es un problema específico, no bien definido. Sin embargo, puede dividirse en varios problemas específicos, bien definidos: planificar una ruta, identificar señales, detectar obstáculos (otros vehículos y peatones), controlar los frenos, etc. Problemas que en conjunto pueden parecer mucho, pero al verlos por separado y poder acotarlos, pueden ser resueltos con técnicas de Inteligencia Artificial.

Otro caso, que sirve para explicar este principio, es el caso de Chorus.ai , una IA que es capaz de transcribir las llamadas que escucha e identificar y anotar los elementos importantes que haya en las mismas. Sus creadores no han tratado de construir una máquina que “haga ventas”, un objetivo que no está ni bien definido ni es específico. Lo que hicieron fue transcribir una conversación (un problema difícil pero bien entendido) y buscar señales específicas que indiquen elementos interesantes en esa transcripción. Siendo así, un asistente de los vendedores, que realiza tareas rutinarias pero necesarias.

Potenciando a los humanos

Otro aspecto clave a tener en cuenta, cuando se va hacer uso de la Inteligencia Artificial, es hacerlo de forma que sirva para potenciar y ayudar a los humanos, no para reemplazarlos. Usar la IA para reemplazar a los humanos probablemente nos llevará a que hagamos un mal uso de la misma. Y, con esto, a que no aprovechemos las oportunidades que se abren, a la hora de hacer una buena integración de la IA con los humanos.

Si se usa la Inteligencia Artificial para la detección de fraudes, probablemente aumentará la cantidad de posibles casos detectados y no se necesitarán tantas personas para analizar los datos, pero sí para gestionar los casos que encuentren. De este modo, la IA puede usarse para realizar la parte más monótona y repetitiva del trabajo, y así poder dedicar más personal (y con un mayor nivel de cualificación) a las partes menos rutinarias y más creativas.

DIFICULTADES PARA SU IMPLEMENTACIÓN

Otro aspecto importante es entender las dificultades que pueden presentarse a la hora de llevar a cabo el desarrollo e integración de la IA, y los costes que ello supone.

Política de gestión de datos

El entrenamiento de un modelo de Inteligencia Artificial requiere datos. Probablemente muchos datos. La realidad es que es poco probable que en el punto de partida se tengan datos útiles si no se ha definido y puesto en marcha, previamente, una buena política de gestión de datos en la empresa.

Los pasos necesarios para desarrollar una buena política de gestión de datos para Inteligencia Artificial son:

  1. Identificar fuentes de datos
  2. Crear canales de transferencia de datos
  3. Limpiar y preparar datos
  4. Identificar los indicadores potenciales en los datos
  5. Y medir el resultado de los mismos

Entrenamiento y Reentrenamiento

Para obtener un buen modelo de Inteligencia Artificial, primero hay que entrenar los algoritmos que lo componen. Este entrenamiento consiste en ir alimentando a los algoritmos con un conjunto de datos “conocidos” (se sabe lo que ha pasado, es decir, quién ha hecho fraude y quién no), hasta que se obtengan unos resultados adecuados. El resultado de este proceso será un modelo, es decir, conjunto de algoritmos que han sido entrenados con datos. A continuación, a este se le pasarán un conjunto de datos “no conocidos” (prueba en real), y se verá si los resultados obtenidos siguen siendo satisfactorios. Si lo son, se daría por finalizado el entrenamiento, si no, habría que hacer modificaciones y repetir el entrenamiento.

Así, puede verse que el entrenamiento del modelo, puede requerir una parte importante los recursos dedicados a la fase de desarrollo de un proyecto de Inteligencia Artificial. Por tanto, a la hora de plantearse la realización de cualquiera de estos proyectos, hay que tener en cuenta el tiempo de entrenamiento, y que este puede verse afectado por una serie de problemas, entre los que se incluyen:

Los sistemas de Inteligencia Artificial son inescrutables

Los sistemas de IA tienen la reputación de ser inescrutables, es decir, dan resultados, pero normalmente no pueden decir por qué han dado esos resultados. En algunos casos, esto no es demasiado importante, pero en otros, como es el caso del análisis de imágenes médicas, el porqué es tan importante como el qué.


LO SIGUIENTE

Si todo lo que hemos visto hasta ahora te ha quedado claro y sigues con la idea de embarcarte en el mundo de la IA, puede decirse que estás listo para empezar la planificación de tu proyecto de Inteligencia Artificial, que tiene que ir acompañada de un buen equipo humano, que desarrolle unas buenas prácticas para trabajar con datos, tiempo suficiente para realizar los entrenamientos de los modelos y la consciencia de los problemas que pueden darse en el camino. No hay nada mágico en la IA.

MÁSTER EXPERTO BIG DATA ANALYTICS

Gracias al Master en Big Data Analytics 100% Online tendrás amplios conocimientos sobre las herramientas y técnicas analíticas necesarias para la modelización de los principales retos de negocio, con el fin de mejorar la toma de decisiones a través de los datos y el conocimiento.

chevron-down