Análisis Predictivo en marketing y ventas: algunas aplicaciones

análisis predictivo Big Data marketing

El análisis predictivo, basado en modelos de machine learning y en algoritmos como los que compartí en el artículo anterior, es de gran utilidad en diversos sectores, pero sobre todo en el marketing y las ventas. En este artículo, se detallan algunas de las aplicaciones del análisis predictivo más frecuentes en esas ramas.

Segmentación de clientes y personalización de la oferta

El análisis predictivo nos permite anticipar qué ofertas serán más efectivas en función del tipo de consumidor. Esto permite la máxima personalización, ya que no nos limitamos a datos cualitativos fáciles de obtener (ingresos, franja de edad, sexo…), sino que añadimos datos sobre sus intereses, gustos y comportamientos de compra previos.

Al realizar una segmentación tan profunda, podemos predecir comportamientos y actitudes futuros en función de los pasados y de los de otros clientes similares, lo que nos permitirá optimizar la oferta y anticiparnos a sus deseos.

Optimización de recursos en el funnel de ventas

Gracias a la analítica predictiva podemos detectar el riesgo de que el cliente abandone su relación comercial con nosotros o el potencial que tiene de gastar más en nuestro negocio o de avanzar en el funnel de ventas. Y, lo que es más importante, cuántos recursos serían necesarios para evitar dicha “fuga” o conseguir que aumente sus gastos o convierta. 

Si el retorno de la inversión en dichos recursos no compensa, podemos ahorrarnos el esfuerzo y “atacar” a clientes menos propensos a marcharse… o más propensos a gastar más y convertir. O a los que cueste menos dinero/tiempo retener, convertir o fidelizar.

En definitiva, el análisis predictivo nos permite separar los clientes potencialmente rentables de los que no lo serán, dedicando los esfuerzos a los primeros y evitando malgastar recursos innecesariamente.

Cross selling y up selling

En función de comportamientos de compra actuales, podemos predecir qué otros productos le interesarán al cliente o el potencial que tiene de comprar una categoría superior y más rentable para nosotros, añadir más productos al carro de la compra… Además, podremos hacerle la sugerencia en el momento justo para lograr más impacto.

Mejora del marketing mix personalizado

La analítica predictiva es capaz de identificar, para cada tipo de cliente, las combinaciones más efectivas de productos, precios, material promocional, canales de comunicación, timing… De esta forma, nos ayuda a coordinar mejor todas las acciones de marketing a nivel global

Publicidad predictiva

Gracias al análisis predictivo, podemos saber a qué clientes “atacar” y elegir el mejor anuncio basándonos en la probabilidad de que el cliente haga clic y en el ROI esperado por cada clic. 

Conocer los cambios en el estilo de vida del cliente antes de que estos ocurran. 

A veces, los algoritmos saben que la vida del cliente va a cambiar… ¡incluso antes que el cliente! Me refiero a cambios tan cruciales como, por ejemplo, matrimonios, movilidad laboral, si van a tener un bebé…

Anticipar tendencias

Con el análisis predictivo, podemos anticiparnos a las tendencias futuras y diseñar productos ad hoc para reaccionar a ellas antes que nadie, lo que nos colocará en una posición ventajosa frente a la competencia y nos pondrá en el top of mind de los consumidores.

En definitiva

El uso de algoritmos de análisis predictivo permite aprovechar más los recursos del departamento de marketing y tener un mejor conocimiento del cliente y del mercado. Por ello, es importante formarse con los mejores, para conocer todas las herramientas que podemos utilizar para realizar este tipo de análisis. En el Master Big Data & Analytics de Datahack, te formarás en las últimas tecnologías para sacar de ellas el máximo provecho. ¡Pide información ya!


Déborah Fernández, responsable de marketing y comunicación de datahack

Deja un comentario

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *